Systematic Investigation of Quercetin for Treating Cardiovascular Disease Based on Network Pharmacology

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haoxian Wang ◽  
Jihong Zhang ◽  
Qinqin Zhu ◽  
Xianyun Fu ◽  
Chenjie Li

Aim. This study aimed to predict the key targets and endocrine mechanisms of Guizhi Fuling Wan (GZFLW) in treating adenomyosis (AM) through network pharmacology, molecular docking, and animal experiment verification. Methods. The related ingredients and targets of GZFLW in treating AM were screened out using TCMSP, BATMAN-TCM, SwissTargetPrediction, and PubChem Database. Then, the protein-protein interaction (PPI) analysis and the network of compound-hub targets were constructed. At the same time, the key targets were uploaded to the Metascape Database for KEGG pathway enrichment analysis. After that, the molecular docking technology of the main active components and hub targets was performed. Furthermore, animal experiments were used to verify the results of network pharmacology analysis. Results. A total of 55 active ingredients of GZFLW and 44 overlapping targets of GZFLW in treating AM were obtained. After screening, 25 hub targets were collected, including ESR1, EGF, and EGFR. Then, the KEGG pathway enrichment analysis results indicated that the endocrine therapeutic mechanism of GZFLW against AM is mainly associated with the estrogen signaling pathway, endocrine resistance, and an EGFR tyrosine kinase signaling pathway. Then, molecular docking showed that the significant compounds of GZFLW had a strong binding ability with ERα and EGFR. More importantly, the animal experiments confirmed that the GZFLW could downregulate the abnormal infiltration of the endometrial epithelium into the myometrium and had no interference with the normal sexual cycle. This effect may be directly related to intervening the local estrogen signaling pathway of the endometrial myometrial interface (EMI). It may also be associated with the myometrium cells’ estrogen resistance via GPER/EGFR signaling pathway. Conclusion. The endocrine mechanism of GZFLW in treating AM was explored based on network pharmacology, molecular docking, and animal experiments, which provided a theoretical basis for the clinical application of GZFLW.


2020 ◽  
Author(s):  
Xin-miao Wang ◽  
Lin Han ◽  
Li-li Zhang ◽  
Sha Di ◽  
Xiu-xiu Wei ◽  
...  

Abstract Background: Shenzhuo formula is a traditional Chinese medicine (TCM) prescription which has significant therapeutic effects on diabetic nephropathy (DN). However, its mechanism remains unknown. Therefore, this study aimed to explore the underlying anti-DN mechanism of shenzhuo formula.Methods: The active ingredients and targets of shenzhuo formula were obtained by searching TCMSP, TCMID, SwissTargetPrediction and HIT. The DN target was identified from TTD, DrugBank and DisGeNet. The potential targets were obtained and PPI network were built after mapping the disease and drug targets. The key targets were screened out by network topology and the “drugs - DN - key targets” network was constructed by Cytoscape. GO analysis and KEGG pathway enrichment analysis were performed using DAVID, and the results were visualized using the Omicshare Tools.Results: We obtained 182 potential targets and 30 key targets. Ulteriorly, “drugs - DN - key targets” network were constructed, and results showed that nodes like M51, M21, M5, M71, M28, EGFR, MMP9, MAPK8, PIK3CA and STAT3 had a higher degree. GO analysis results mainly involved in positive regulation of transcription from RNA polymerase II promoter, inflammatory response, lipopolysaccharide-mediated signalingpathway and other biological processes. The results of KEGG showed that DN-related pathways like TNF signaling pathway, PI3K-Akt signaling pathway were at the top of the list.Conclusion: This article reveals the possible mechanism of shenzhuo formula in the treatment of DN through network pharmacology research, and lays a foundation for further studies.


2021 ◽  
Vol 29 ◽  
pp. 239-256
Author(s):  
Qian Wang ◽  
Lijing Du ◽  
Jiana Hong ◽  
Zhenlin Chen ◽  
Huijian Liu ◽  
...  

BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2020 ◽  
Author(s):  
Jieshu You ◽  
Chen-yue Li ◽  
Wei Chen ◽  
Xia-lin Wu ◽  
Li-jie Huang ◽  
...  

Abstract Background and objective: As the pathological mechanisms of AD are complex, increasing evidence have demonstrated Chinese Medicine with multi-ingredients and multi-targets may be more suitable for the treatment of diseases with complex pathogenesis. Therefore, the study was to preliminarily decipher the bioactive compounds and potential mechanisms of Qiong Yu Gao (QYG) for AD prevention and treatment by an integrated network pharmacology approach. Methods: Putative ingredients of QYG and significant genes of AD were retrieved from public database after screening. Then QYG ingredients target proteins/genes were obtained by target fishing. Compound-target-disease network was constructed using Cytoscape to decipher the mechanism of QYG for AD. KEGG pathway and GO enrichment analysis were performed to investigate the molecular mechanisms and pathways related to QYG for AD treatments. Results: Finally, 70 compounds and 511 relative drug targets were collected. In which, 17 representative direct targets were found. Gene ontology enrichment analysis revealed that the adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway was the key biological processes and were regulated simultaneously by the 17 direct targets. The KEGG pathway enrichment analysis found that three signaling pathways were closely related to AD prevention and treatment by QYG, including PI3K-Akt signaling pathway, regulation of actin cytoskeleton pathway and insulin resistance pathway. Conclusion: This study demonstrated that QYG exerted the effect of preventing and treating AD by regulating multi-targets with multi-components. Furthermore, the study demonstrated that a network pharmacology-based approach was useful for elucidation of the interrelationship between complex diseases and interventions of Chinese herbal medicines.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Liangtao Luo ◽  
Haowen Wang ◽  
Guowei Huang ◽  
Lu Zhang ◽  
Xiuwei Li ◽  
...  

Objective. Tinglizi has been extensively used to treat chronic heart failure (CHF) in modern times, but the material basis and pharmacological mechanisms are still unclear. To explore the material basis and corresponding potential targets and to elucidate the mechanism of Tinglizi, network pharmacology and molecular docking methods were utilized. Methods. The main chemical compounds and potential targets of Tinglizi were collected from the pharmacological database analysis platform (TCMSP). The corresponding genes of related action targets were queried through gene cards and UniProt database. The corresponding genes of CHF-related targets were searched through Disgenet database, and the intersection targets were obtained by drawing Venn map with the target genes related to pharmacodynamic components. Then, drug targets and disease targets were intersected and put into STRING database to establish a protein interaction network. The “active ingredient-CHF target” network was constructed with Cytoscape 3.8.2. Finally, Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of intersection targets were analyzed using metascape. With the aid of SYBYL software, the key active ingredients and core targets were docked at molecular level, and the results were visualized by PyMOL software. Molecular docking was carried out to investigate interactions between active compounds and potential targets. Results. A total of 12 active components in Tinglizi were chosen from the TCMSP database, and 193 corresponding targets were predicted. Twenty-nine potential targets of Tinglizi on CHF were obtained, of which nine were the core targets of this study. Twenty GO items were obtained by GO function enrichment analysis ( P < 0.05 ), and 10 signal pathways were screened by KEGG pathway enrichment analysis ( P < 0.05 ), which is closely related to the treatment of CHF by Tinglizi. The constructed drug compound composition action target disease network shows that quercetin, kaempferol, and other active compounds play a key role in the whole network. The results of molecular docking showed that all the key active ingredients, such as quercetin and isorhamnetin, were able to successfully dock with ADRB2 and HMOX1 with a total score above 5.0, suggesting that these key components have a strong binding force with the targets. Conclusion. Through network pharmacology and molecular docking technology, we found that the main components of Tinglizi in the treatment of CHF are quercetin, kaempferol, β-sitosterol, isorhamnetin, and so on. The action targets are beta 2-adrenergic receptor (ADRB2), heme oxygenase 1 (HMOX1), and so on. The main pathways are advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling pathway in diabetic complications, hypoxia-inducible factor (HIF-1) signaling pathway, estrogen signaling pathway, and so on. They play an integrated role in the treatment of CHF.


2020 ◽  
Author(s):  
Kainan Lin ◽  
Zhenyan Pan ◽  
Renke He ◽  
Hanchu Wang ◽  
Kai Zhou ◽  
...  

Abstract Purpose: Endometriosis was a common gynecological disease, however, the specific mechanism and the key molecules of endometriosis remained uncertain. This study aimed to single out key genes associated with poor prognosis, and further uncover underlying mechanisms.Methods: Data regarding mRNA expression profiles used in this study were retrieved from the Gene Expression Omnibus (GEO) database, a total of three mRNA expression profiles were included for subsequent analysis (GSE31515, GSE58178 and GSE120103). Then, we conducted Gene Ontology analysis (GO analysis), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) analysis by the software R.Results: A total of 304 differentially expressed genes (DEGs) between endometriosis tissues and normal endometrium tissues were identified in integrated analysis, including 185 up-regulated genes and 119 down-regulated genes. GO analysis reveals that the DEGs of endometriosis were closely associated with molecular origin of bacteria. KEGG pathway enrichment analysis indicates that the DEGs were mainly involved in AGE-RAGE signaling pathway in diabetic complications. In addition, PPI of these DEGs was visualized by Cytoscape platform with utilization of Search Tool for the Retrieval of Interacting Genes (STRING). PPI analysis identifies 10 potential DEGs-related protein targets, including CCND1, IL6, CCL2, COL1A2, PTGS2, VCAM1, COL3A1, ELN, SERPINE1, HSP90B1. Conclusion: In conclusion, the present study reveals that bacterial contamination, defect of female reproductive system development, retrograde menstruation and the AGE-RAGE signaling pathway may be involved in the development of endometriosis In addition, these identified DEGs may be of clinical significance for the diagnosis and treatment of the endometriosis.


Author(s):  
Qiguo Wu ◽  
Yeqing Hu

Background: Diabetes mellitus is one of the most common endocrine metabolic disorder diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) has been reported to exert important activities of anti-diabetic. Objective: In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. Methods: Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes are used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The construction of biological networks were performed to analyze the mechanisms as follows: (1) Compound-Target network; (2) Common target-Compound network; (3) Common targets protein interaction network; (4) Compound-Diabetes protein-protein interactions (PPI) network; (5) Target-Pathway network; (6) Compound-Target-Pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. Results: 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by String database. Furthermore, the potential targets were used to GO and pathway enrichment analysis. 8 key active compounds (quercetin, Iristectorigenin A, 4-Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. Conclusion: Based on network pharmacology and molecular docking of this work provided an important systematic and visualized basis for further understanding the synergy mechanism of ML acting on diabetes.


2020 ◽  
Author(s):  
Xue Fan ◽  
Xin Guo ◽  
Ying Li ◽  
Mingguo Xu

Abstract Background: Kawasaki disease (KD) is an acute self-limiting systemic vasculitis. In study, a randomized controlled trial regarding berberine (main component of Coptidis Rhizoma) function in treating KD was carried out and possible pharmacological mechanisms of Coptidis Rhizoma (CR) on KD therapy were investigated using an integrated network pharmacology approach. Methods: A total of 58 children with KD, younger than 5 years old, were enrolled in the study from October 2018 to May 2019. The patients were randomly divided into control group and BBR treatment group. The therapeutic indicators of the 2 groups before and after treatments were compared. Then, compounds and drug targets of CR from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the SWISS database, the SEA database and the STITCH database were collected, and targeted KD genes were retrieved from the DisGeNET databases, the DrugBank databases and the GeneCards databases. The network pharmacology approach involved network construction, target prediction, and module analysis. KEGG pathway and GO enrichment analysis were performed to investigate the molecular mechanisms and pathways related to CR for KD treatments. Results: The berberine group was able to reduce the values of CRP, NLR and PLR significantly. Also, the effect of berberine improved the resistance rate of intravenous injection of gamma globulin significantly. In total, 9 compounds and 369 relative drug targets were collected from TCMSP, SWISS, SEA and STITCH database and 624 KD target genes were collected in DisGeNET, DrugBank and GeneCards database. The network analysis revealed that 41 targets might be the therapeutic targets of CR on KD, among which ATK1, RELA, SRC, CASP3 and MTOR ranked in top 5. Gene ontology enrichment analysis revealed that the reaction to bacteria-derived molecules and to lipopolysaccharide and the apoptosis process were the key biological procedures for CR treating KD. The KEGG pathway enrichment analysis pointed out that the four signaling pathways closely related to CR treating KD including age-rage signaling pathway, fluid shear stress and atherosclerosis, TNF signaling pathway and Toll-like receptor signaling pathway in diabetic complications. Conclusions: we concluded that the introduction of routine treatment combined with berberine in treating KD has advantages than routine treatment and can be considered as a preferred approach in KD. Network pharmacology showed that CR exerted the effect of prevention KD by regulating multi-targets and multi-components.


2020 ◽  
Author(s):  
Jieshu You ◽  
Chen-yue Li ◽  
Wei Chen ◽  
Xia-lin Wu ◽  
Li-jie Huang ◽  
...  

Abstract Background and objective: As the pathological mechanisms of AD is complex, increasing evidence have demonstrated Chinese Medicine with multi-ingredients and multi-targets may be more suitable for the treatment of diseases with complex pathogenesis. Therefore, the study was to preliminarily decipher the bioactive compounds and potential mechanisms of Qiong Yu Gao (QYG) for AD prevention and treatment by an integrated network pharmacology approach. Methods: Putative ingredients of QYG and significant genes of AD were retrieved from public database after screening. Then QYG ingredients target proteins/genes were obtained by target fishing. Compound-target-disease network was constructed using Cytoscape to decipher the mechanism of QYG for AD. KEGG pathway and GO enrichment analysis were performed to investigate the molecular mechanisms and pathways related to QYG for AD treatments. Results: Finally, 70 compounds and 511 relative drug targets were collected. In which, 17 representative direct targets were found. Gene ontology enrichment analysis revealed that the adenylate cyclase-inhibiting G-protein coupled acetylcholine receptor signaling pathway was the key biological processes and were regulated simultaneously by the 17 direct targets. KEGG pathway enrichment analysis found that three signaling pathways were closely related with AD treatment by QYG, including PI3K-Akt signaling pathway, regulation of actin cytoskeleton pathway and insulin resistance pathway. Conclusion: This study demonstrated that QYG exerted the effect of treating AD by regulating multi-targets with multi-components. Furthermore, the study demonstrated that a network pharmacology-based approach was useful for elucidation of the interrelationship between complex diseases and interventions of Chinese herbal medicines.


Sign in / Sign up

Export Citation Format

Share Document