Removal of refractory organics and heavy metals in landfill leachate concentrate by peroxi-coagulation process

2022 ◽  
Vol 116 ◽  
pp. 43-51
Author(s):  
Dun Liu ◽  
Ying Yuan ◽  
Yuquan Wei ◽  
Hao Zhang ◽  
Yanxiao Si ◽  
...  
Author(s):  
Shuokr Qarani Aziz ◽  
Amin Mojiri

Solid waste is an important environmental problem in both developing and developed countries. Management of Municipal Solid Waste (MSW) is one of the main modern environmental issues in municipal areas because of both its huge amount and variety of constituents. Information on characteristics of MSW is important for the formulation of new waste management policy. Landfill leachate is defined as an aqueous effluent produced when water percolates through the waste in a landfill. The nature of landfill leachate depends on the type of MSW being dumped, landfill age, moisture content, seasonal weather variations, site hydrology, the stage of decomposition in the landfill and pH. Produced leachate could contain large amounts of contaminants measured as COD, BOD5, NH3–N, heavy metals, phenols, phosphorus etc. Obviously, as landfill age increases, the biodegradable fraction of organic pollutants in leachate decrease as an outcome of the anaerobic decomposition occurring in landfill site. Thus, mature or stabilized leachate contains much more refractory organics than young leachate.


Author(s):  
Shuokr Qarani Aziz ◽  
Amin Mojiri

Solid waste is an important environmental problem in both developing and developed countries. Management of Municipal Solid Waste (MSW) is one of the main modern environmental issues in municipal areas because of both its huge amount and variety of constituents. Information on characteristics of MSW is important for the formulation of new waste management policy. Landfill leachate is defined as an aqueous effluent produced when water percolates through the waste in a landfill. The nature of landfill leachate depends on the type of MSW being dumped, landfill age, moisture content, seasonal weather variations, site hydrology, the stage of decomposition in the landfill and pH. Produced leachate could contain large amounts of contaminants measured as COD, BOD5, NH3–N, heavy metals, phenols, phosphorus etc. Obviously, as landfill age increases, the biodegradable fraction of organic pollutants in leachate decrease as an outcome of the anaerobic decomposition occurring in landfill site. Thus, mature or stabilized leachate contains much more refractory organics than young leachate.


2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


2010 ◽  
Vol 178 (1-3) ◽  
pp. 699-705 ◽  
Author(s):  
Jin-Song Guo ◽  
Abdulhussain A. Abbas ◽  
You-Peng Chen ◽  
Zhi-Ping Liu ◽  
Fang Fang ◽  
...  

2008 ◽  
Vol 8 (8) ◽  
pp. 1383-1394 ◽  
Author(s):  
Udomporn Chuangcham ◽  
Wanpen Wirojanagu ◽  
Punya Charusiri . ◽  
William Milne-Home ◽  
Rungruang Lertsirivo

Sign in / Sign up

Export Citation Format

Share Document