Influence of boron substitution on the crystallisation behaviour of tetracalcium phosphate phase in the 4.5SiO2-3Al2O3-1.5P2O5-5CaO glass system

2019 ◽  
Vol 39 (15) ◽  
pp. 5068-5076 ◽  
Author(s):  
Siqi Zhang ◽  
Jia Li ◽  
Wen Ni ◽  
Keqing Li
2014 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Surbhi Sharma ◽  
◽  
Amit Sarin ◽  
Navjeet Sharma ◽  
◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 114270
Author(s):  
A. Venkata Sekhar ◽  
A.V. Kityk ◽  
J. Jedryka ◽  
P. Rakus ◽  
A. Wojciechowski ◽  
...  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
A. Venkata Sekhar ◽  
A. Siva Sesha Reddy ◽  
A.V. Kityk ◽  
J. Jedryka ◽  
P. Rakus ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


2021 ◽  
Vol 11 (10) ◽  
pp. 4603
Author(s):  
Soyoung Kim ◽  
Karam Han ◽  
Seonhoon Kim ◽  
Linganna Kadathala ◽  
Jinhyeok Kim ◽  
...  

Today, the most common way of laser sealing is using a glass frit paste and screen printer. Laser sealing using glass frit paste has some problems, such as pores, nonuniform height, imperfect hermetic sealing, etc. In order to overcome these problems, sealing using fiber types of sealant is attractive for packaging devices. In this work, (70-x)V2O5-5ZnO-22BaO-3B2O3-xM(PO3)n glasses (mol%) incorporated with xM(PO3)n concentration (where M = Mg, Al, n = 2, 3, respectively) were fabricated and their thermal, thermomechanical, and structural properties were investigated. Most importantly, for this type of sealing, the glass should have a thermal stability (ΔT) of ≥80 °C and the coefficient of thermal expansion (CTE) between the glass and panel should be 1.0 ppm/°C. The highest thermal stability ΔT of the order of 93.2 °C and 112.9 °C was obtained for the 15 mol% of Mg(PO3)2 and Al(PO3)3 doped glasses, respectively. This reveals that the bond strength and connectivity is more strongly improved by trivalent Al(PO3)3. The CTE of a (70-x)V2O5-5ZnO-22BaO-3B2O3-xAl(PO3)3 glass system (mol%) (where x = 5–15, mol%) is in the range of 9.5–15.5 (×10−6/K), which is comparable with the CTE (9–10 (×10−6/K)) of commercial DSSC glass panels. Based on the results, the studied glass systems are considered to be suitable for laser sealing using fiber types of sealant.


1974 ◽  
Vol 9 (5) ◽  
pp. 2145-2149 ◽  
Author(s):  
R. J. Trainor ◽  
D. C. McCollum

Sign in / Sign up

Export Citation Format

Share Document