scholarly journals Assessing the in vitro digestion of Sesbania gum, a galactomannan from S. cannabina, and subsequent impact on the fecal microbiota

2021 ◽  
Vol 87 ◽  
pp. 104766
Author(s):  
Mengyi Zhou ◽  
Yuheng Tao ◽  
Ting Wang ◽  
Rong Wang ◽  
Qiang Yong
Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4354
Author(s):  
Xin Zhou ◽  
Zhao Zhang ◽  
Fenghong Huang ◽  
Chen Yang ◽  
Qingde Huang

The digestion of flaxseed polysaccharides (FSP) in simulated saliva, gastric and small intestine conditions was assessed, as well as in vitro fermentation of FSP by human gut microbiota. FSP was not degraded in the simulated digestive systems (there was no change in molecular weight or content of reducing sugars), indicating that ingested FSP would reach the large intestine intact. Changes in carbohydrate content, reducing sugars and culture pH suggested that FSP could be broken down and used by gut microbiota. FSP modulated the composition and structure of the gut microbiota by altering the Firmicutes/Bacteroidetes ratio and increasing the relative abundances of Prevotella, Phascolarctobacterium, Clostridium and Megamonas, which can degrade polysaccharides. Meanwhile, FSP fermentation increased the concentration of short-chain fatty acids, especially propionic and butyric acids. Our results indicate that FSP might be developed as a functional food that benefits gut health.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5201
Author(s):  
Eun Yeong Jang ◽  
Ki-Bae Hong ◽  
Yeok Boo Chang ◽  
Jungcheul Shin ◽  
Eun Young Jung ◽  
...  

This study measured the proliferative activity of malto-oligosaccharide (MOS) as a prebiotic against Bifidobacteria, resistance to digestion in vitro, and changes during in vitro fermentation by human fecal microorganisms. It consisted of 21.74%, 18.84%, and 11.76% of maltotriose, maltotetraose, and maltopentaose produced by amylase (HATT), respectively. When 1% of MOS was added to a modified PYF medium as the carbon source, proliferation of Bifidobacterium breve was increased significantly. During the in vitro digestion test, MOS was partially degraded by intestinal enzymes. Fermentation characteristics by human fecal microorganisms were evaluated by adding 1% galacto-oligosaccharide (GOS), as well as 1% and 2% MOS as carbon sources to the basal medium, respectively. In comparison with the addition of 1% of MOS and GOS, the total short chain fatty acid (SCFA) content increased over time when 2% of MOS was added. The species diversity and richness of intestinal microbiota increased significantly with 2% MOS compared to those with 1% GOS. In addition, the 2% addition of MOS reduced intestinal pathobiont microorganisms and increased commensal microorganisms including Bifidobacterium genus. Collectively, MOS produced by amylase increased the SCFA production and enhanced the growth of beneficial bacteria during in vitro fermentation by human fecal microbiota.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2019 ◽  
Vol 141 ◽  
pp. 240-246 ◽  
Author(s):  
Hui Zhang ◽  
Zhi Li ◽  
Yanjun Tian ◽  
Zibo Song ◽  
Lianzhong Ai

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 140 ◽  
pp. 110054
Author(s):  
Pablo Gallego-Lobillo ◽  
Alvaro Ferreira-Lazarte ◽  
Oswaldo Hernández-Hernández ◽  
Mar Villamiel

Sign in / Sign up

Export Citation Format

Share Document