scholarly journals Developing a novel cholesterol-based nanocarrier with high transfection efficiency and serum compatibility for gene therapy

2019 ◽  
Vol 118 (4) ◽  
pp. 766-775 ◽  
Author(s):  
Karen Chang ◽  
Fu-Hsiung Chang ◽  
Min-Huey Chen
2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Soo-Yong Park ◽  
Yang H. Yun ◽  
Bum-Joon Park ◽  
Hyung-Il Seo ◽  
Ildoo Chung

Gene therapy is a suitable alternative to chemotherapy due to the complications of drug resistance and toxicity of drugs, and is also known to reduce the occurrence of cellular mutation through the use of gene carriers. In this study, gene carrier nanoparticles with minimal toxicity and high transfection efficiency were fabricated from a biocompatible and biodegradable polymer, l-tyrosine polyurethane (LTU), which was polymerized from presynthesized desaminotyrosyl tyrosine hexyl ester (DTH) and polyethylene glycol (PEG), by using double emulsion and solvent evaporation techniques, resulting in the formation of porous nanoparticles, and then used to evaluate their potential biological activities through molecular controlled release and transfection studies. To assess cellular uptake and transfection efficiency, two model drugs, fluorescently labeled bovine serum albumin (FITC-BSA) and plasmid DNA-linear polyethylenimine (LPEI) complex, were successfully encapsulated in nanoparticles, and their transfection properties and cytotoxicities were evaluated in LX2 as a normal cell and in HepG2 and MCF7 as cancer cells. The morphology and average diameter of the LTU nanoparticles were confirmed using light microscopy, transmission electron microscopy, and dynamic light scattering, while confocal microscopy was used to validate the cellular uptake of FITC-BSA-encapsulated LTU nanoparticles. Moreover, the successful cellular uptake of LTU nanoparticles encapsulated with pDNA-LPEI and the high transfection efficiency, confirmed by gel electrophoresis and X-gal assay transfection, indicated that LTU nanoparticles had excellent cell adsorption ability, facilitated gene encapsulation, and showed the sustained release tendency of genes through transfection experiments, with an optimal concentration ratio of pDNA and LPEI of 1:10. All the above characteristics are ideal for gene carriers designed to transport and release drugs into the cytoplasm, thus facilitating effective gene therapy.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wei-Ti Kuo ◽  
Hong-Yi Huang ◽  
Min-Ju Chou ◽  
Meng-Chao Wu ◽  
Yi-You Huang

A novel carrier on balancing the transfection efficiency and minimizing cytotoxicity was designed. Gelatin cross-linked with 1.8 kDa of PEI (GA-PEI 1.8 k) formed stable complex and resulted in high positiveζpotential (42.47 mV) and buffering effect. These nanoparticles with N/P ratio of 30 give high transfection efficiency  RLU/μg protein and cell viability (86.4%). These modified GA-PEI nanoparticles, with high transfection efficiency and low cell toxicity, can be a potential gene vector in gene therapy.


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1230004 ◽  
Author(s):  
YOU-KYOUNG KIM ◽  
QUYNH-PHUONG LUU ◽  
MOHAMMAD ARIFUL ISLAM ◽  
YUN-JAIE CHOI ◽  
CHONG-SU CHO ◽  
...  

Gene therapy is a treatment for inborn and acquired diseases, although the development of safe and effective gene delivery system is a great challenge to make a gene therapy a success. Viral vectors have been used in a majority of clinics because of their high transfection efficiency in vitro and in vivo. However, their use has been limited because of several drawbacks, such as induction of immune response, recombination of wild-type viruses, limitation in the size of inserted gene, and difficulty in large-scale production. Nonviral vectors have been widely proposed safe alternatives to viral vectors because they have low immunogenicity, flexibility in the size of gene to be delivered, cell targetibility, and easy scalability of production, although they have low transfection efficiency compared to viral vectors. Among nonviral vectors, polyethylenimine (PEI) has been widely used as a standard gene carriers due to its high pH-buffering capacity for endosomal escape although high-molecular-weight PEI is too toxic owing to non-degradability. Recently, many types of degradable PEI have been studied due to high transfection efficiency with lower cytotoxicity. This review explains recent progress on the development of degradable PEIs as nonviral vectors. The present paper summarizes the transfection efficiency of DNA or silencing efficiency of small interfering RNA (siRNA) based on the kinds of degradable linkage between low PEI and crosslinkers. Degradable linkages, such as ester, disulfide, imines, carbamate, amide and ketal in the degradable PEIs are covered.


2017 ◽  
Vol 5 (40) ◽  
pp. 8035-8051 ◽  
Author(s):  
Jing Zhao ◽  
Qian Li ◽  
Xuefang Hao ◽  
Xiangkui Ren ◽  
Jintang Guo ◽  
...  

Non-viral gene carriers for gene therapy have been developed for many years.


2021 ◽  
Author(s):  
Zikun Yu ◽  
Zhimin Zhang ◽  
Jing Yan ◽  
Ziyin Zhao ◽  
Chenglong Ge ◽  
...  

Guanidine-rich helical polypeptides bearing hydrophobic amino acid pendants displayed high transfection efficiency both in vitro and in vivo and low cytotoxicity toward applications in gene therapy.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2021 ◽  
Vol 9 (7) ◽  
pp. 2454-2466
Author(s):  
Yingying Liu ◽  
Yuli Zhou ◽  
Jinfeng Xu ◽  
Hui Luo ◽  
Yao Zhu ◽  
...  

A novel dual-targeted cationic microbubbles help to improve gene transfection efficiency.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Anna Egorova ◽  
Sofia Shtykalova ◽  
Alexander Selutin ◽  
Natalia Shved ◽  
Marianna Maretina ◽  
...  

Uterine leiomyoma (UL) is one of the most common benign tumors in women that often leads to many reproductive complications. Suicide genetherapy was suggested as a promising approach for UL treatment. In the present study, we describe iRGD ligand-conjugated cysteine-rich peptide carrier RGD1-R6 for targeted DNA delivery to αvβ3 integrin-expressing primary UL cells. The physico-chemical properties, cytotoxicity, transfection efficiency and specificity of DNA/RGD1-R6 polyplexes were investigated. TheHSV-1thymidine kinase encoding plasmid delivery to PANC-1pancreatic carcinoma cells and primary UL cells resulted in significant suicide gene therapy effects. Subsequent ganciclovir treatment decreased cells proliferative activity, induced of apoptosis and promoted cells death.The obtained results allow us to concludethatthe developed RGD1-R6 carrier can be considered a promising candidate for suicide gene therapy of uterine leiomyoma.


Author(s):  
A. A. Mikheev ◽  
E. V. Shmendel ◽  
E. S. Zhestovskaya ◽  
G. V. Nazarov ◽  
M. A. Maslov

Objectives. Gene therapy is based on the introduction of genetic material into cells, tissues, or organs for the treatment of hereditary or acquired diseases. A key factor in the success of gene therapy is the development of delivery systems that can efficiently transfer genetic material to the place of their therapeutic action without causing any associated side effects. Over the past 10 years, significant effort has been directed toward creating more efficient and biocompatible vectors capable of transferring nucleic acids (NAs) into cells without inducing an immune response. Cationic liposomes are among the most versatile tools for delivering NAs into cells; however, the use of liposomes for gene therapy is limited by their low specificity. This is due to the presence of various biological barriers to the complex of liposomes with NA, including instability in biological fluids, interaction with serum proteins, plasma and nuclear membranes, and endosomal degradation. This review summarizes the results of research in recent years on the development of cationic liposomes that are effective in vitro and in vivo. Particular attention is paid to the individual structural elements of cationic liposomes that determine the transfection efficiency and cytotoxicity. The purpose of this review was to provide a theoretical justification of the most promising choice of cationic liposomes for the delivery of NAs into eukaryotic cells and study the effect of the composition of cationic lipids (CLs) on the transfection efficiency in vitro.Results. As a result of the analysis of the related literature, it can be argued that one of the most promising delivery systems of NAs is CL based on cholesterol and spermine with the addition of a helper lipid DOPE. In addition, it was found that varying the composition of cationic liposomes, the ratio of CL to NA, or the size and zeta potential of liposomes has a significant effect on the transfection efficiency.Conclusions. Further studies in this direction should include optimization of the conditions for obtaining cationic liposomes, taking into account the physicochemical properties and established laws. It is necessary to identify mechanisms that increase the efficiency of NA delivery in vitro by searching for optimal structures of cationic liposomes, determining the ratio of lipoplex components, and studying the delivery efficiency and properties of multicomponent liposomes.


Sign in / Sign up

Export Citation Format

Share Document