scholarly journals Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp

2012 ◽  
Vol 108 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Pedro E.D. Augusto ◽  
Marcelo Cristianini ◽  
Albert Ibarz
2011 ◽  
Vol 103 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Mustafa Tahsin Yılmaz ◽  
Safa Karaman ◽  
Hasan Cankurt ◽  
Ahmed Kayacier ◽  
Osman Sagdic

2013 ◽  
Vol 16 (3) ◽  
pp. 63-66
Author(s):  
Peter Hlaváč ◽  
Monika Božiková

Abstract This paper presents the selected rheological properties of pancake dough such as dynamic and kinematic viscosity and fluidity. The effect of used ingredients and temperature on rheological properties is investigated. Measurements were performed on three pancake dough samples. In two samples, there was used milk with a different fat content, and in the third sample, all ingredients were in a powder state. A digital rotational viscometer Anton Paar DV-3P was used for measuring the rheological properties. The principle of viscometer measurement is based on the dependence of sample resistance to probe rotation. Results of measurements are shown as graphical dependencies of rheological parameters on temperature. Exponential functions were used to express the dependencies of all rheological parameters on temperature. Dynamic and kinematic viscosity decreased, and fluidity increased with temperature. The highest values of dynamic viscosity were obtained for pancake dough from powder ingredients. A higher fat content of used milk caused higher values of dynamic viscosity.


2018 ◽  
Author(s):  
Anisa Dhroso ◽  
Hasime Manaj ◽  
Ilirjan Malollari ◽  
Berisha Varvara

1982 ◽  
Vol 22 (04) ◽  
pp. 558-562 ◽  
Author(s):  
P.C. Rawat ◽  
S.L. Agarwal

Abstract An important parameter required for computing heat loss through buried submarine pipelines transporting crude oil is the thermal conductivity of soils. This paper describes an apparatus designed for determination of the thermal conductivity of soils at the desired moisture/ density condition in the laboratory under steady-state conditions. Experimental results on the three soils studied show that thermal conductivity increases as dry density increases at a constant moisture content and that it increases as water content increases at constant dry density. These results confirm the trends isolated earlier by Kersten. The experimental results are compared with the available empirical relationships. Kersten's relation is observed to predict the thermal conductivity of these soils reasonably. The predictions from Makowski and Mochlinski's relation (quoted by Szilas) are not good but improve if the sum of silt and clay fractions is treated as a clay fraction in the computation. Introduction Submarine pipelines are used extensively for transporting crude oil from offshore to other pipelines offshore or onshore. These pipelines usually are steel pipes covered with a coating of concrete. They often are buried some depth below the mudline. The rheological properties of different crude oils vary, and their viscosities increase with a decrease in temperature. Below some temperature, the liquid oil tends to gel. Therefore, for efficient transportation, the crude must be at a relatively high temperature so that it has a low viscosity. The temperature of the soil/water system surrounding a submarine pipeline is usually lower than that of oil. This temperature difference induces heat to flow from the oil to the environment, and the temperature of the oil decreases as it travels along the length of the pipeline. One must ensure that this temperature reduction does not exceed desirable limits dictated by the rheological properties of oil and by the imperatives of efficient economic properties of oil and by the imperatives of efficient economic transportation. Thus the analytical problem is to predict the temperature of crude in the pipeline some distance away from the input station. To do so, knowledge of the overall heat transfer coefficient for the pipeline is required, for which, in turn, it is necessary to know the thermal conductivities of the oil, the pipeline materials and its coating, and the soil. This paper presents thermal conductivities of soils determined in the laboratory under steady-state conditions and also presents a comparison of the test results of three soils with values determined from existing empirical relationships. Literature Review Heat moves spontaneously from higher to lower temperatures. In a completely dry porous body, transmission of heat can take place not only by conduction through the solid framework of the body and the air in the pores but also by convection and radiation between the walls of a pore and by macro- and microdistillation. In soils, however, it can be ascribed essentially to conduction, a molecular phenomenon that can be expressed in terms of experimentally determined coefficients of conductivity or resistivity, although these actually may include microdistillation and other mechanisms. SPEJ p. 558


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 927 ◽  
Author(s):  
Jiří Smilek ◽  
Sabína Jarábková ◽  
Tomáš Velcer ◽  
Miloslav Pekař

The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15–0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups.


1993 ◽  
Vol 264 (6) ◽  
pp. H1825-H1830 ◽  
Author(s):  
T. B. Bentley ◽  
H. Meng ◽  
R. N. Pittman

This study investigated the effect of temperature on the oxygen diffusion coefficient (DO2) of hamster retractor muscle from 11 to 37 degrees C. DO2 was measured using a non-steady-state technique, whereas muscle O2 consumption (VO2) was estimated after steady state was reached. DO2 was 0.84 +/- 0.04 x 10(-5) cm2/s at 11 degrees C and rose exponentially to 2.41 +/- 0.19 x 10(-5) cm2/s at 37 degrees C, producing a temperature coefficient for DO2 of 4.60%/degrees C for this temperature range. To measure DO2 directly at 37 degrees C, it was necessary to inhibit tissue VO2 with Amytal. The DO2 measurements made at 37 degrees C were significantly higher than previously reported values, which had been based on extrapolations from lower temperatures (6). Further analysis suggests a possible transition in the diffusion pathway between 23 and 30 degrees C, resulting in a DO2 higher than that previously expected. This larger DO2, together with a recently published value of oxygen solubility (alpha) (21), results in an in vitro Krogh's diffusion coefficient (KO2) that is 2.4 times larger than that previously reported (24) and therefore significantly reduces an order of magnitude discrepancy between in vitro and estimated in vivo KO2 values (24). Muscle VO2 was 0.35 ml O2.min-1.100 g-1 at 11 degrees C and increased with temperature, resulting in an activation energy of the rate-limiting reaction from the Arrhenius equation of -10.5 kcal/mol between 11 and 30 degrees C.


Sign in / Sign up

Export Citation Format

Share Document