Formulation and evaluation of thermoreversible sugar-paste for hot-melt 3D printing

2022 ◽  
pp. 110944
Author(s):  
Sun Min Kim ◽  
Jung Hee Woo ◽  
Hyun Woo Kim ◽  
Hyun Jin Park
Keyword(s):  
2019 ◽  
Vol 9 (01) ◽  
pp. 15-20
Author(s):  
B Pandey ◽  
A B Khan

The aim of the review was to explore the necessity, advantages and different techniques of oral films for enhancing solubility of poorly soluble drugs with an emphasis on the newer, state-of the art technologies, such as 3D printing and hot-melt extrusion (HME). The historical background of oral films is presented along with the regularly used techniques. The modern approach of quality-by-design (QbD) is unravelled, identifying appropriate critical process parameters (CPP) and applied to oral films. A section is devoted modern technologies such as 3D printing and HME of oral films. Oral films are innovative formulations by which poorly soluble drugs have been founds to give positive results in enhancing their solubility and dissolution characteristics. With modern sophisticated techniques, precise mass production of oral films has been given a thrust. Oral films have better patient compliance, improved biopharmaceutical properties, improved efficacy, and better safety. By applying QbD and implementation of modern technologies the newer generation of oral films are yielding promising results


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4492
Author(s):  
Eric Ofosu Kissi ◽  
Robin Nilsson ◽  
Liebert Parreiras Nogueira ◽  
Anette Larsson ◽  
Ingunn Tho

Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 203 ◽  
Author(s):  
Deck Tan ◽  
Mohammed Maniruzzaman ◽  
Ali Nokhodchi

Three-dimensional printing, also known as additive manufacturing, is a fabrication process whereby a 3D object is created layer-by-layer by depositing a feedstock material such as thermoplastic polymer. The 3D printing technology has been widely used for rapid prototyping and its interest as a fabrication method has grown significantly across many disciplines. The most common 3D printing technology is called the Fused Deposition Modelling (FDM) which utilises thermoplastic filaments as a starting material, then extrudes the material in sequential layers above its melting temperature to create a 3D object. These filaments can be fabricated using the Hot-Melt Extrusion (HME) technology. The advantage of using HME to manufacture polymer filaments for FDM printing is that a homogenous solid dispersion of two or more pharmaceutical excipients i.e., polymers can be made and a thermostable drug can even be introduced in the filament composition, which is otherwise impractical with any other techniques. By introducing HME techniques for 3D printing filament development can improve the bioavailability and solubility of drugs as well as sustain the drug release for a prolonged period of time. The latter is of particular interest when medical implants are considered via 3D printing. In recent years, there has been increasing interest in implementing a continuous manufacturing method on pharmaceutical products development and manufacture, in order to ensure high quality and efficacy with less batch-to-batch variations of the pharmaceutical products. The HME and FDM technology can be combined into one integrated continuous processing platform. This article reviews the working principle of Hot Melt Extrusion and Fused Deposition Modelling, and how these two technologies can be combined for the use of advanced pharmaceutical applications.


2017 ◽  
Vol 8 (11) ◽  
pp. 957-966 ◽  
Author(s):  
Marcilio Cunha-Filho ◽  
Maísa RP Araújo ◽  
Guilherme M Gelfuso ◽  
Tais Gratieri

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1613
Author(s):  
Jiaxiang Zhang ◽  
Anqi Lu ◽  
Rishi Thakkar ◽  
Yu Zhang ◽  
Mohammed Maniruzzaman

Conventional oral dosage forms may not always be optimal especially for those patients suffering from dysphasia or difficulty swallowing. Development of suitable oral thin films (OTFs), therefore, can be an excellent alternative to conventional dosage forms for these patient groups. Hence, the main objective of the current investigation is to develop oral thin film (OTF) formulations using novel solvent-free approaches, including additive manufacturing (AM), hot-melt extrusion, and melt casting. AM, popularly recognized as 3D printing, has been widely utilized for on-demand and personalized formulation development in the pharmaceutical industry. Additionally, in general active pharmaceutical ingredients (APIs) are dissolved or dispersed in polymeric matrices to form amorphous solid dispersions (ASDs). In this study, acetaminophen (APAP) was selected as the model drug, and Klucel™ hydroxypropyl cellulose (HPC) E5 and Soluplus® were used as carrier matrices to form the OTFs. Amorphous OTFs were successfully manufactured by hot-melt extrusion and 3D printing technologies followed by comprehensive studies on the physico-chemical properties of the drug and developed OTFs. Advanced physico-chemical characterizations revealed the presence of amorphous drug in both HME and 3D printed films whereas some crystalline traces were visible in solvent and melt cast films. Moreover, advanced surface analysis conducted by Raman mapping confirmed a more homogenous distribution of amorphous drugs in 3D printed films compared to those prepared by other methods. A series of mathematical models were also used to describe drug release mechanisms from the developed OTFs. Moreover, the in vitro dissolution studies of the 3D printed films demonstrated an improved drug release performance compared to the melt cast or extruded films. This study suggested that HME combined with 3D printing can potentially improve the physical properties of formulations and produce OTFs with preferred qualities such as faster dissolution rate of drugs.


2020 ◽  
Vol 17 ◽  
Author(s):  
Sanjeevani Deshkar ◽  
Mrunali Rathi ◽  
Shital Zambad ◽  
Krishnakant Gandhi

Abstract:: Hot melt extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively inves-tigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a sin-gle unit dosage form. Fused deposition modeling (FDM) is a 3D printing technique with a variety of applications in pharma-ceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technol-ogy in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process along with its application in 3D printing. The review also summarizes the published reports on the application of HME cou-pled with 3D printing technology in drug delivery.


2021 ◽  
pp. 133260
Author(s):  
Meng Xiao ◽  
Yuan Yao ◽  
Chuanchuan Fan ◽  
Ziyang Xu ◽  
Yang Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document