Antimicrobial resistance, virulence genes and genetic relatedness of Salmonella enterica serotype Enteritidis isolates recovered from human gastroenteritis in Tehran, Iran

2018 ◽  
Vol 12 ◽  
pp. 220-226 ◽  
Author(s):  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal ◽  
Masoumeh Douraghi ◽  
Hamed Memariani ◽  
Bita Bakhshi ◽  
...  
2021 ◽  
Vol 9 (5) ◽  
pp. 952
Author(s):  
Nure Alam Siddiky ◽  
Md Samun Sarker ◽  
Md. Shahidur Rahman Khan ◽  
Ruhena Begum ◽  
Md. Ehsanul Kabir ◽  
...  

Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken at wet markets in Dhaka, Bangladesh. A total of 870 cecal contents of broiler, sonali, and native chickens were collected from 29 wet markets. The overall prevalence of S. Typhimurium, S. Enteritidis, and untyped Salmonella spp., were found to be 3.67%, 0.57%, and 1.95% respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. S. Enteritidis isolates carried all virulence genes whilst S. Typhimurium isolates carried six virulence genes except sefA and spvC. A diverse phenotypic and genotypic AMR pattern was found. Harmonic descending trends of resistance patterns were observed among the broiler, sonali, and native chickens. Interestingly, virulent and MDR Salmonella enterica serovars were found in native chicken, although antimicrobials were not used in their production cycle. The research findings anticipate that virulent and MDR Salmonella enterica are roaming in the wet markets which can easily anchor to the vendor, consumers, and in the food chain.


2009 ◽  
Vol 8 (6) ◽  
pp. 579-582 ◽  
Author(s):  
Adriano Sakai Okam ◽  
Raphael Lucio Andreatti ◽  
Ticiana Silva Roch ◽  
Anita Menconi ◽  
Guilherme Augusto Marietto-G

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1307
Author(s):  
Nesreen H. Aljahdali ◽  
Bijay K. Khajanchi ◽  
Kennedi Weston ◽  
Joanna Deck ◽  
Justin Cox ◽  
...  

Salmonella enterica is one of the most common bacterial foodborne pathogens in the United States, causing illnesses that range from self-limiting gastroenteritis to more severe, life threatening invasive disease. Many Salmonella strains contain plasmids that carry virulence, antimicrobial resistance, and/or transfer genes which allow them to adapt to diverse environments, and these can include incompatibility group (Inc) FIB plasmids. This study was undertaken to evaluate the genomic and phenotypic characteristics of IncFIB-positive Salmonella enterica serovar Typhimurium isolates from food animal sources, to identify their plasmid content, assess antimicrobial resistance and virulence properties, and compare their genotypic isolates with more recently isolated S. Typhimurium isolates from food animal sources. Methods: We identified 71 S. Typhimurium isolates that carried IncFIB plasmids. These isolates were subjected to whole genome sequencing and evaluated for bacteriocin production, antimicrobial susceptibility, the ability to transfer resistance plasmids, and a subset was evaluated for their ability to invade and persist in intestinal human epithelial cells. Results: Approximately 30% of isolates (n = 21) displayed bacteriocin inhibition of Escherichia coli strain J53. Bioinformatic analyses using PlasmidFinder software confirmed that all isolates contained IncFIB plasmids along with multiple other plasmid replicon types. Comparative analyses showed that all strains carried multiple antimicrobial resistance genes and virulence factors including iron acquisition genes, such as iucABCD (75%), iutA (94%), sitABCD (76%) and sitAB (100%). In 17 cases (71%), IncFIB plasmids, along with other plasmid replicon types, were able to conjugally transfer antimicrobial resistance and virulence genes to the susceptible recipient strain. For ten strains, persistence cell counts (27%) were noted to be significantly higher than invasion bacterial cell counts. When the genome sequences of the study isolates collected from 1998–2003 were compared to those published from subsequent years (2005–2018), overlapping genotypes were found, indicating the perseverance of IncFIB positive strains in food animal populations. This study confirms that IncFIB plasmids can play a potential role in disseminating antimicrobial resistance and virulence genes amongst bacteria from several food animal species.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1589
Author(s):  
Kevin Cui ◽  
Iris Gong ◽  
Alvin Dong ◽  
Jacob Yan ◽  
Max Wang ◽  
...  

A large portion of annual deaths worldwide are due to infections caused by disease-causing pathogens. These pathogens contain virulence genes, which encode mechanisms that facilitate infection and microbial survival in hosts. More recently, antimicrobial resistance (AMR) genes, also found in these pathogens, have become an increasingly large issue. While the National Center for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser (NPDIB) database has been compiling genes involved in microbial virulence and antimicrobial resistance through isolate samples, few studies have identified the genes primarily responsible for virulence and compared them to those responsible for AMR. This study performed the first multivariate statistical analysis of the multidimensional NPDIB data to identify the major virulence genes from historical pathogen isolates for Australia, China, South Africa, UK, and US—the largely populated countries from five of the six major continents. The important virulence genes were then compared with the AMR genes to study whether there is correlation between their occurrences. Among the significant genes and pathogens associated with virulence, it was found that the genes fdeC, iha, iss, iutA, lpfA, sslE, ybtP, and ybtQ are shared amongst all five countries. The pathogens E. coli and Shigella, Salmonella enterica, and Klebsiella pneumoniae mostly contained these genes and were common among four of the five studied countries. Additionally, the trend of virulence was investigated by plotting historical occurrences of gene and pathogen frequency in the annual samples. These plots showed that the trends of E. coli and Shigella and Salmonella enterica were similar to the trends of certain virulence genes, confirming the two pathogens do indeed carry important virulence genes. While the virulence genes in the five countries are not significantly different, the US and the UK share the largest amount of important virulence genes. The plots from principal component analysis and hierarchical clustering show that the important virulence and AMR genes were not significantly correlated, with only few genes from both types of genes clustered into the same groups.


2014 ◽  
Vol 58 (11) ◽  
pp. 6501-6507 ◽  
Author(s):  
Chien-Shun Chiou ◽  
Tsai-Ling Lauderdale ◽  
Dac Cam Phung ◽  
Haruo Watanabe ◽  
Jung-Che Kuo ◽  
...  

ABSTRACTWe characterizedSalmonella entericaserovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam to investigate their genetic relatedness and antimicrobial resistance. The isolates from Bangladesh and Vietnam were genetically closely related but were distant from those from Indonesia and Taiwan. All but a few isolates from Indonesia and Taiwan were susceptible to all antimicrobials tested. The majority of isolates from Bangladesh and Vietnam were multidrug resistant (MDR) and belonged to the widespread haplotype H58 clone. IncHI1 plasmids were detected in all MDRS. Typhi isolates from Vietnam but in only 15% of MDR isolates from Bangladesh. Resistance genes in the majority of MDRS. Typhi isolates from Bangladesh should reside in the chromosome. Among the isolates from Bangladesh, 82% and 40% were resistant to various concentrations of nalidixic acid and ciprofloxacin, respectively. Several resistance mechanisms, including alterations in gyrase A, the presence of QnrS, and enhanced efflux pumps, were involved in the reduced susceptibility and resistance to fluoroquinolones. Intensive surveillance is necessary to monitor the spread of chromosome-mediated MDR and fluoroquinolone-resistantS. Typhi emerging in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document