scholarly journals Antimicrobial Resistance in Salmonella enterica Serovar Typhi Isolates from Bangladesh, Indonesia, Taiwan, and Vietnam

2014 ◽  
Vol 58 (11) ◽  
pp. 6501-6507 ◽  
Author(s):  
Chien-Shun Chiou ◽  
Tsai-Ling Lauderdale ◽  
Dac Cam Phung ◽  
Haruo Watanabe ◽  
Jung-Che Kuo ◽  
...  

ABSTRACTWe characterizedSalmonella entericaserovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam to investigate their genetic relatedness and antimicrobial resistance. The isolates from Bangladesh and Vietnam were genetically closely related but were distant from those from Indonesia and Taiwan. All but a few isolates from Indonesia and Taiwan were susceptible to all antimicrobials tested. The majority of isolates from Bangladesh and Vietnam were multidrug resistant (MDR) and belonged to the widespread haplotype H58 clone. IncHI1 plasmids were detected in all MDRS. Typhi isolates from Vietnam but in only 15% of MDR isolates from Bangladesh. Resistance genes in the majority of MDRS. Typhi isolates from Bangladesh should reside in the chromosome. Among the isolates from Bangladesh, 82% and 40% were resistant to various concentrations of nalidixic acid and ciprofloxacin, respectively. Several resistance mechanisms, including alterations in gyrase A, the presence of QnrS, and enhanced efflux pumps, were involved in the reduced susceptibility and resistance to fluoroquinolones. Intensive surveillance is necessary to monitor the spread of chromosome-mediated MDR and fluoroquinolone-resistantS. Typhi emerging in Bangladesh.

2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Xueying Zhang ◽  
Yongying Bai ◽  
Long Zhang ◽  
Mohamed S. Draz ◽  
Zhi Ruan ◽  
...  

ABSTRACT Here, the antimicrobial susceptibility, resistance mechanisms, and clonality of Mobiluncus sp. isolates recovered from gynecological outpatients in China were investigated. Compared to M. mulieris, M. curtisii exhibited higher antimicrobial resistance to metronidazole, clindamycin, and tetracycline. Whole-genome sequencing indicated that the clindamycin resistance gene erm(X) was located on a transposable element, Tn5432, which was composed of two IS1249 sequences. Phylogenetic analysis indicated that Mobiluncus spp. had high diversity, with isolates being grouped into several sporadic clades.


2019 ◽  
Vol 8 (31) ◽  
Author(s):  
Baha Abdalhamid ◽  
Emily L. Mccutchen ◽  
Kacie D. Flaherty ◽  
Steven H. Hinrichs ◽  
Peter C. Iwen

Salmonella enterica serovar Dublin, which can cause enteritis and systemic infections in humans, has been associated with antimicrobial resistance. Here, we report draft genome sequences of seven multidrug-resistant S. Dublin isolates from human samples. These sequences will contribute to an understanding of pathogenesis and resistance determinants in this serovar.


2019 ◽  
Vol 8 (21) ◽  
Author(s):  
Selma Gonzalez ◽  
Roger B. Harvey ◽  
H. Morgan Scott ◽  
Sara D. Lawhon ◽  
Javier Vinasco ◽  
...  

Salmonella enterica (non-Typhi) is one of the top five pathogens causing enteric infections worldwide. Draft whole-genome sequences of multidrug-resistant (MDR) Salmonella enterica serovar I 4,[5],12:i:− isolates from swine tissue samples collected at slaughter were evaluated for antimicrobial resistance genotypes.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Ying-Shu Liao ◽  
Bo-Han Chen ◽  
Yu-Ping Hong ◽  
Ru-Hsiou Teng ◽  
You-Wun Wang ◽  
...  

ABSTRACT Salmonella enterica serovar Goldcoast infection was rare in Taiwan; it was not detected in routine surveillance from 2004 to 2013. This serovar was first identified in 2014, but the frequency of infection remained low until 2017. From 2014 to 2016, all but one isolate was pan-susceptible. S. Goldcoast infections abruptly increased in 2018, and all isolates were multidrug-resistant (MDR). All MDR isolates harbored an IncHI2 plasmid, and the majority carried 14 antimicrobial resistance genes, aac(3)-IId, aadA22, aph(3′)-Ia, aph(6)-Id, blaTEM-1B, blaCTX-M-55, lnu(F), floR, qnrS13, arr-2, sul2, sul3, tet(A), and dfrA14. S. Goldcoast strains recovered in Taiwan and 96 of 99 strains from Germany, the Netherlands, the United Kingdom, and the United States belonged to sequence type 358 (ST358). Whole-genome single-nucleotide polymorphism and core genome multilocus sequence type analyses revealed that all strains of the ST358 clone shared a high degree of genetic relatedness. The present study highlighted that a dramatic increase in S. Goldcoast infections followed the emergence of MDR strains and indicated that a genetically closely related S. Goldcoast ST358 clone may have widespread significance internationally.


Author(s):  
Priyanka Jain ◽  
Rajlakshmi Viswanathan ◽  
Gourab Halder ◽  
Sulagna Basu ◽  
Shanta Dutta

We report draft whole-genome sequences of two multidrug-resistant Salmonella enterica serovar Senftenberg sequence type 14 strains resistant to ciprofloxacin, ceftriaxone, and/or azithromycin, which were isolated from neonatal stool and goat meat in Kolkata, India. The genome characteristics, as well as the antimicrobial resistance genes, plasmid types, and integrons, are presented in this report.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Yi-Tsung Lin ◽  
Yi-Hsiang Cheng ◽  
Chien Chuang ◽  
Sheng-Hua Chou ◽  
Wan-Hsin Liu ◽  
...  

ABSTRACT Hypervirulent Klebsiella pneumoniae strains are the major cause of liver abscesses throughout East Asia, and these strains are usually antibiotic susceptible. Recently, multidrug-resistant and hypervirulent (MDR-HV) K. pneumoniae strains have emerged due to hypervirulent strains acquiring antimicrobial resistance determinants or the transfer of a virulence plasmid into a classic MDR strain. In this study, we characterized the clinical and microbiological properties of K. pneumoniae liver abscess (KPLA) caused by MDR-HV strains in Taiwan. Patients with community onset KPLA were retrospectively identified at Taipei Veterans General Hospital during January 2013 to May 2018. Antimicrobial resistance mechanisms, capsular types, and sequence types were determined. MDR-HV strains and their parental antimicrobial-susceptible strains further underwent whole-genome sequencing (WGS) and in vivo mice lethality tests. Thirteen MDR-HV strains were identified from a total of 218 KPLA episodes. MDR-HV strains resulted in similar outcomes to antimicrobial-susceptible strains. All MDR-HV strains were traditional hypervirulent clones carrying virulence capsular types. The major resistance mechanisms were the overexpression of efflux pumps and/or the acquisition of ESBL or AmpC β-lactamase genes. WGS revealed that two hypervirulent strains had evolved to an MDR phenotype due to mutation in the ramR gene and the acquisition of an SHV-12-bearing plasmid, respectively. Both these MDR-HV strains retained high virulence compared to their parental strains. The spread of MDR-HV K. pneumoniae strains in the community raises significant public concerns, and measures should be taken to prevent the further acquisition of carbapenemase and other resistance genes among these strains in order to avoid the occurrence of untreatable KPLA.


2014 ◽  
Vol 59 (1) ◽  
pp. 721-723 ◽  
Author(s):  
Chien-Shun Chiou ◽  
Munirul Alam ◽  
Jung-Che Kuo ◽  
Yen-Yi Liu ◽  
Pei-Jen Wang

ABSTRACTA salmonella genomic island, designated SGI11, was found in 18 of 26 multidrug-resistantSalmonella entericaserovar Typhi isolates from Bangladesh. SGI11 was an IS1composite transposon and carried 7 resistance genes that conferred resistance to 5 first-line antimicrobials. Eleven of the 18 SGI11-carryingS. Typhi isolates had developed resistance to high levels of ciprofloxacin.


2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2017 ◽  
Vol 4 (4) ◽  
Author(s):  
Takashi Matono ◽  
Masatomo Morita ◽  
Koji Yahara ◽  
Ken-ichi Lee ◽  
Hidemasa Izumiya ◽  
...  

Abstract Background Little is known about the evolutionary process and emergence time of resistance mutations to fluoroquinolone in Salmonella enterica serovar Typhi. Methods We analyzed S. Typhi isolates collected from returned travelers between 2001 and 2016. Based on ciprofloxacin susceptibility, isolates were categorized as highly resistant (minimum inhibitory concentration [MIC] ≥ 4 μg/mL [CIPHR]), resistant (MIC = 1–2 μg/mL [CIPR]), intermediate susceptible (MIC = 0.12–0.5 μg/mL [CIPI]), and susceptible (MIC ≤ 0.06 μg/mL [CIPS]). Results A total of 107 isolates (33 CIPHR, 14 CIPR, 30 CIPI, and 30 CIPS) were analyzed by whole-genome sequencing; 2461 single nucleotide polymorphisms (SNPs) were identified. CIPS had no mutations in the gyrA or parC genes, while each CIPI had 1 of 3 single mutations in gyrA (encoding Ser83Phe [63.3%], Ser83Tyr [33.3%], or Asp87Asn [3.3%]). CIPHR had the same 3 mutations: 2 SNPs in gyrA (encoding Ser83Phe and Asp87Asn) and a third in parC (encoding Ser80Ile). CIPHR shared a common ancestor with CIPR and CIPI isolates harboring a single mutation in gyrA encoding Ser83Phe, suggesting that CIPHR emerged 16 to 23 years ago. Conclusions Three SNPs—2 in gyrA and 1 in parC—are present in S. Typhi strains highly resistant to fluoroquinolone, which were found to have evolved in 1993–2000, approximately 10 years after the beginning of the ciprofloxacin era. Highly resistant strains with survival advantages arose from strains harboring a single mutation in gyrA encoding Ser83Phe. Judicious use of fluoroquinolones is warranted to prevent acceleration of such resistance mechanisms in the future.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


Sign in / Sign up

Export Citation Format

Share Document