scholarly journals Genotypic and phenotypic analyses of aac(3) aminoglycoside-resistance gene diversity point to three distinct phenotypes of contemporary clinical relevance

Author(s):  
Michel Plattner ◽  
Chloé Goyet ◽  
Klara Haldimann ◽  
Marina Gysin ◽  
Mario Juhas ◽  
...  
Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


2011 ◽  
Vol 66 (9) ◽  
pp. 2180-2181 ◽  
Author(s):  
N. Bouzidi ◽  
L. Aoun ◽  
M. Dekhil ◽  
S. A. Granier ◽  
L. Poirel ◽  
...  

1998 ◽  
Vol 42 (10) ◽  
pp. 2759-2761 ◽  
Author(s):  
Eric Rudant ◽  
Patrice Courvalin ◽  
Thierry Lambert

ABSTRACT Insertion sequence IS18 was detected by analysis of the spontaneous aminoglycoside resistant mutant Acinetobactersp. 13 strain BM2716-1. Insertion of the element upstream from the silent acetyltransferase gene aac(6′)-Ij created a hybrid promoter that putatively accounts for the expression of the aminoglycoside resistance gene. The 1,074-bp IS18 element contained partially matched (20 out of 26 bases) terminal inverted repeats, one of which overlapped the 3′ end of a 935-bp open reading frame potentially encoding a protein related to the transposases of the IS30 family. IS18 was found in 6 out of 29 strains of Acinetobacter sp. 13 but not in 10 strains each of A. baumannii and A. haemolyticus.


2002 ◽  
Vol 46 (11) ◽  
pp. 3660-3664 ◽  
Author(s):  
Margie D. Lee ◽  
Susan Sanchez ◽  
Martha Zimmer ◽  
Umelaalim Idris ◽  
Mark E. Berrang ◽  
...  

ABSTRACT Using PCR, we screened 105 isolates of poultry-associated Campylobacter jejuni for the presence of class 1 integrons. Of those isolates, 21% (22 of 105) possessed the integrase gene, but only 5 isolates produced an amplicon in a 5′-3′ conserved sequence PCR directed toward amplification of the resistance cassettes. DNA sequencing demonstrated that all five isolates possessed the aminoglycoside resistance gene, aacA4.


2012 ◽  
Vol 25 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Edmund A. Quirin ◽  
Harpartap Mann ◽  
Rachel S. Meyer ◽  
Alessandra Traini ◽  
Maria Luisa Chiusano ◽  
...  

Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species—especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 973-987 ◽  
Author(s):  
S Steiner ◽  
J Wendland ◽  
M C Wright ◽  
P Philippsen

Abstract A slow and a fast growth phenotype were observed after transformation of the phytopathogenic fungus Ashbya gossypii using a plasmid carrying homologous DNA and as selectable marker the Tn903 aminoglycoside resistance gene expressed from a strong A. gossypii promoter. Transformations with circular plasmids yielded slowly and irregularly growing geneticin-resistant mycelia in which 1% of nuclei contained plasmid sequences. Occasionally, fast growing sectors appeared which were shown to be initiated by homologous integration of the transforming DNA. Transformants obtained with plasmids linearized within the homology region immediately exhibited fast radial growth. In all 28 transformants analyzed plasmid DNA was integrated homologously. Such apparent lack of nonhomologous recombination has so far not been observed in filamentous ascomycetes. In 14 transformants two to four tandemly integrated plasmid copies were found. They underwent several types of genetic changes, mainly in the older mycelium: excision of whole plasmid copies and rearrangements within the integrated DNA (inversions and deletions). These internal rearrangements involved 360-bp inverted repeats, remnants of IS-elements flanking the resistance gene, and 156-bp direct repeats, originating from the strong A. gossypii promoter. Improved vectors lacking sequence repetitions were constructed and used for stable one-step gene replacement in A. gossypii.


2018 ◽  
Author(s):  
Varsha Rani Gajamer ◽  
Amitabha Bhattacharjee ◽  
Deepjyoti Paul ◽  
Birson Ingti ◽  
Arunabha Sarkar ◽  
...  

ABSTRACTExtended-spectrum β-lactamase (ESBL) producing bacteria acts as a serious threat, and its co-existence with other antibiotic resistant gene makes the clinical scenario worse nowadays. Therefore in this study, we investigated the occurrence of ESBL genes coexisting with carbapenem, AmpC and aminoglycoside resistance gene in uropathogens. Out of 1516 urine samples, 454 showed significant bacteriuria with a prevalence rate of 29.94 %. Escherichia coli (n=340) were found to be the most predominant uropathogen followed by Klebsiella pneumoniae (n=92), Pseudomonas aeruginosa (n=10) and Proteus mirabilis (n=9). Among the total uropathogens, sixty-three ESBL-producers were identified which included blaCTX-M-15 (n=32), followed by blaCTX-M-15 + blaOXA-2 (n=15), blaCTX-M-15 + blaOXA-2 + blaTEM (n=6), blaOXA-2 (n=5), blaOXA-2 + blaSHV-76 (n=1), blaTEM+SHV-76 (n= 1) and blaTEM (n=1). All ESBL genes were found on plasmid incompatibility types: HI1, I1, FIA+FIB, FIA and Y and were horizontally transferable. Among 63 ESBL-producers, 59 isolates harboured carbapenem-resistant genes which included blaNDM-5 (n=48), blaNDM-5 + blaOXA-48 (n=5), blaNDM-5 + blaIMP (n=5) and blaNDM-5 + blaIMP + blaVIM (n=1). The ESBL producing uropathogens also harbored 16S rRNA methylase genes which included rmtB (n=9), rmtA (n=4), rmtC (n=1) and ArmA (n=1) followed by AmpC genes which includes CIT (n=8) and DHA-1 (n=1) genes. Imipenem and gentamicin were found to be more effective. We speculating, this is the first report showing the prevalence of multidrug-resistant uropathogens in this area demanding regular surveillance for such resistance mechanisms which will be useful for health personnel to treat ESBL infection and its co-existence with another antibiotic resistance gene.


2017 ◽  
Vol 13 (3) ◽  
pp. 254-263
Author(s):  
Hadi Rahman Rasheed ◽  
◽  
Shahad Saad Alwan ◽  
Dawood Salman Salman

Sign in / Sign up

Export Citation Format

Share Document