Abundance and environmental drivers of anthropogenic litter on 5 Lake Michigan beaches: A study facilitated by citizen science data collection

2015 ◽  
Vol 41 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Timothy J. Hoellein ◽  
Meagan Westhoven ◽  
Olga Lyandres ◽  
Jamie Cross
2015 ◽  
Vol 162 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Fabrizio Buldrini ◽  
Antinisca Simoncelli ◽  
Stefania Accordi ◽  
Giovanna Pezzi ◽  
Daniele Dallai

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Tam Tran ◽  
W. Tanner Porter ◽  
Daniel J. Salkeld ◽  
Melissa A. Prusinski ◽  
Shane T. Jensen ◽  
...  

Citizen science projects have the potential to address hypotheses requiring extremely large datasets that cannot be collected with the financial and labour constraints of most scientific projects. Data collection by the general public could expand the scope of scientific enquiry if these data accurately capture the system under study. However, data collection inconsistencies by the untrained public may result in biased datasets that do not accurately represent the natural world. In this paper, we harness the availability of scientific and public datasets of the Lyme disease tick vector to identify and account for biases in citizen science tick collections. Estimates of tick abundance from the citizen science dataset correspond moderately with estimates from direct surveillance but exhibit consistent biases. These biases can be mitigated by including factors that may impact collector participation or effort in statistical models, which, in turn, result in more accurate estimates of tick population sizes. Accounting for collection biases within large-scale, public participation datasets could update species abundance maps and facilitate using the wealth of citizen science data to answer scientific questions at scales that are not feasible with traditional datasets.


Author(s):  
Antonio M. Portas ◽  
Luke Barnard ◽  
Chris Scott ◽  
R. Giles Harrison

The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as ‘captivated’ or ‘inspired’ by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.


2019 ◽  
Author(s):  
Stuart Flack ◽  
Kevin Ponto ◽  
Travis Tangen ◽  
Karen B. Schloss

We are using LEGO for a variety of new tasks like surveys, data capture, and data visualization. We have found that LEGO is a low-tech high-touch approach to mapping and data visualization. Through two projects we explore how standard LEGO sets can be used with both children and adults to gather information, present it in an appealing way, and catalyze memorable conversations about that information in community based settings. The first project, “What Color is?” used LEGO to conduct and visualize answers to a 21 question survey with children and families at the 2018 Wisconsin Science Festival. The second project uses LEGO to visualize citizen science data on air quality on the South and Westside of Chicago. We believe that using LEGO for data collection and visualization will enable new forms of fact driven community based advocacy.


2014 ◽  
Vol 139 ◽  
pp. 180-187 ◽  
Author(s):  
Kylie Paul ◽  
Michael S. Quinn ◽  
Marcel P. Huijser ◽  
Jonathan Graham ◽  
Len Broberg

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Christina L. Catlin-Groves

Within conservation and ecology, volunteer participation has always been an important component of research. Within the past two decades, this use of volunteers in research has proliferated and evolved into “citizen science.” Technologies are evolving rapidly. Mobile phone technologies and the emergence and uptake of high-speed Web-capable smart phones with GPS and data upload capabilities can allow instant collection and transmission of data. This is frequently used within everyday life particularly on social networking sites. Embedded sensors allow researchers to validate GPS and image data and are now affordable and regularly used by citizens. With the “perfect storm” of technology, data upload, and social networks, citizen science represents a powerful tool. This paper establishes the current state of citizen science within scientific literature, examines underlying themes, explores further possibilities for utilising citizen science within ecology, biodiversity, and biology, and identifies possible directions for further research. The paper highlights (1) lack of trust in the scientific community about the reliability of citizen science data, (2) the move from standardised data collection methods to data mining available datasets, and (3) the blurring of the line between citizen science and citizen sensors and the need to further explore online social networks for data collection.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 293
Author(s):  
Sara Souther ◽  
Vincent Randall ◽  
Nanebah Lyndon

Federal land management agencies in the US are tasked with maintaining the ecological integrity of over 2 million km2 of land for myriad public uses. Citizen science, operating at the nexus of science, education, and outreach, offers unique benefits to address socio-ecological questions and problems, and thus may offer novel opportunities to support the complex mission of public land managers. Here, we use a case study of an iNaturalist program, the Tribal Nations Botanical Research Collaborative (TNBRC), to examine the use of citizen science programs in public land management. The TNBRC collected 2030 observations of 34 plant species across the project area, while offering learning opportunities for participants. Using occurrence data, we examined observational trends through time and identified five species with 50 or fewer digital observations to investigate as species of possible conservation concern. We compared predictive outcomes of habitat suitability models built using citizen science data and Forest Inventory and Analysis (FIA) data. Models exhibited high agreement, identifying the same underlying predictors of species occurrence and, 95% of the time, identifying the same pixels as suitable habitat. Actions such as staff training on data use and interpretation could enhance integration of citizen science in Federal land management.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 683
Author(s):  
Marc Herremans ◽  
Karin Gielen ◽  
Jos Van Kerckhoven ◽  
Pieter Vanormelingen ◽  
Wim Veraghtert ◽  
...  

The peacock butterfly is abundant and widespread in Europe. It is generally believed to be univoltine (one generation per year): adults born in summer overwinter and reappear again in spring to reproduce. However, recent flight patterns in western Europe mostly show three peaks during the year: a first one in spring (overwintering butterflies), a second one in early summer (offspring of the spring generation), and a third one in autumn. It was thus far unclear whether this autumn flight peak was a second new generation or consisted of butterflies flying again in autumn after a summer rest (aestivation). The life cycle of one of Europe’s most common butterflies is therefore still surprisingly inadequately understood. We used hundreds of thousands of observations and thousands of pictures submitted by naturalists from the public to the online portal observation.orgin Belgium and analyzed relations between flight patterns, condition (wear), reproductive cycles, peak abundances, and phenology to clarify the current life history. We demonstrate that peacocks have shifted towards two new generations per year in recent decades. Mass citizen science data in online portals has become increasingly important in tracking the response of biodiversity to rapid environmental changes such as climate change.


Sign in / Sign up

Export Citation Format

Share Document