Backward-trajectory analysis of a link between the meteorological optical range and long-range air transport

2021 ◽  
Author(s):  
Karim A. Shukurov
Polar Science ◽  
2013 ◽  
Vol 7 (3-4) ◽  
pp. 205-213 ◽  
Author(s):  
Kazue Suzuki ◽  
Takashi Yamanouchi ◽  
Kenji Kawamura ◽  
Hideaki Motoyama

2020 ◽  
Author(s):  
Felix Friedl-Vallon ◽  
Jörn Ungermann ◽  
Sören Johansson ◽  
Gerald Wetzel ◽  
Markus Geldenhuys ◽  
...  

<p>The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier transform spectrometer (iFTS) using a 2-dimensional detector array to record emission spectra in the mid-infrared region with high spatial resolution. GLORIA has been operated on the High Altitude and Long Range Research Aircraft (HALO) during the SouthTRAC campaign in September-November 2019. The campaign with base in Rio Grande (Tierra del Fuego) consisted of two observational periods, mainly in September and November 2019. Apart from many local flights, between the two phases HALO returned to Germany which allowed us to acquire long-range hemispheric cross-sections.</p><p>Two dimensional distributions of pollution species like C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>2</sub>, HCOOH, and PAN, which are produced as primary and secondary products from biomass burning sources have been derived from the GLORIA observations. We will show that during the hemispheric cross sections as well as during some of the local flights, GLORIA observed pollution plumes with extensions of many kilometres in altitude and hundreds of kilometres horizontally with strongly enhanced concentrations of these species.</p><p>Trajectory analysis as well as comparisons to Microwave Limb Sounder (MLS) satellite observations show that the origin of plumes are mainly fires in South America and Africa, but also first signs of the Australian bush fires have been detected in the UTLS as early as November 2019.</p>


2003 ◽  
Vol 11 ◽  
pp. 133-138
Author(s):  
Gakuji KURATA ◽  
Toshihiro KITADA ◽  
Kouhei YAMAMOTO ◽  
Gregory R. CARMICHAEL ◽  
Youhua TANG

Author(s):  
K. J. Moon ◽  
B. J. Kong ◽  
J. S. Han ◽  
Y. S. Ghim

Aims: This study aimed to study the long-range transport of anthropogenic carbonaceous aerosol at Gosan, Korea Study Design: Chemical composition of fine particles (aerodynamic diameter < 2.5㎛) and PAHs of TSP measured at Gosan during six intensive measurement periods covering four seasons. And the chemical characteristics of particulate matter were classified and compared each other according to the major source areas identified by using backward trajectory analysis in order to study the impact of distant source regions on the carbonaceous aerosol at Gosan, Korea. Place and Duration of Study: Sample: Gosan, Jeju Island in Republic of Korea, from 13 to 25 Nov. 2001, from 29 Mar. to 11 Apr. 2002, from 27 Aug. to 11 Sep. 2002, from 14 to 26 Feb 2003, from 6 to 22 Jun. 2003, and from 18 Aug. to 1 Sep. 2003. Methodology: In order to investigate the chemical composition of fine particles, 7 major ion components, 21 trace elements, organic and elemental carbon of PM2.5 were measured. In addition, particulate hazardous pollutants including 17 polycyclic aromatic hydrocarbons (PAHs) were analyzed. The measured data were classified according to the dominant source area identified with the three-day backward trajectory analysis. Then several ratios of species combining EC, OC, SO42-, K+ and PAH compounds were used to identify potential sources of carbonaceous materials. Results: Quite different characteristic in the chemical composition of fine particles was observed by regional groups of backward trajectories. Concentrations of ion components including secondary aerosol such as SO42- and NH4+ were relatively high when air masses were originated from north China. Concentrations of OC and gaseous PAHs were higher when they transported from Japan than from other source regions. High concentrations of secondary aerosols as well as particulate PAHs were observed in the air mass from north China with a higher correlation between them. Elemental carbon had a better correlation in this case not only with secondary aerosols, but also with OC and CO, implying that carbonaceous materials were originated from long-distance combustion sources. Especially positive correlation with benzo(ghi)perylene suggested that they also had a vehicular origin. Conclusion: The results showed that biomass burning and vehicular emissions mainly influenced ambient fine particles when they derived from north China and the Korea peninsula while fossil fuel combustion chiefly affected them when they originated in south China during six intensive measurement periods.


2019 ◽  
Vol 55 (12) ◽  
pp. 196
Author(s):  
WEI Zhao ◽  
LONG Teng ◽  
LI Huaijian ◽  
WANG Zhu ◽  
LIU Li

2019 ◽  
Vol 19 (1) ◽  
pp. 363-378 ◽  
Author(s):  
Yan Yu ◽  
Olga V. Kalashnikova ◽  
Michael J. Garay ◽  
Michael Notaro

Abstract. Asian dust, primarily emitted from the Taklamakan and Gobi deserts, has been reported to reach remote destinations, such as North America. However, the relative contribution of the Taklamakan and Gobi deserts to dust loadings through long-range transport remains unaddressed in any observational study. Here, the climatology of Asian dust activation and potential for transport is investigated using stereo observations of dust sources from the Multi-angle Imaging SpectroRadiometer (MISR) instrument combined with observation-initiated trajectory modeling. MISR-derived dust plume top height and dust plume motion vectors confirm the peak of dust activation and transport potential in spring over the Gobi Desert and in both spring and summer over the Taklamakan Desert. The long-range trajectory patterns of Asian dust, including the influence on North America through trans-Pacific transport, are assessed using extensive forward trajectories initiated by MISR dust plume observations. The trajectory analysis reveals latitude-dependent spread of dust trajectories from the Taklamakan and Gobi deserts, with Taklamakan dust dominantly affecting to the south of 50∘ N and Gobi dust primarily affecting to the north of 50∘ N in North America. The Asian dust activation and transport potential exhibit substantial seasonal and interannual variability, motivating future studies on the potential drivers.


Sign in / Sign up

Export Citation Format

Share Document