A procedure for the assessment of the toxicity of intermediates and products formed during the accidental thermal decomposition of a chemical species

2010 ◽  
Vol 176 (1-3) ◽  
pp. 575-578 ◽  
Author(s):  
Ilaria Di Somma ◽  
Antonino Pollio ◽  
Gabriele Pinto ◽  
Maria De Falco ◽  
Elio Pizzo ◽  
...  
1992 ◽  
Vol 64 (19) ◽  
pp. 931A-940A ◽  
Author(s):  
Totaro Imasaka ◽  
Masami Hozumi ◽  
Nobuhiko Ishibashi

1992 ◽  
Vol 64 (19) ◽  
pp. 2206-2209 ◽  
Author(s):  
Totaro. Imasaka ◽  
Masami. Hozumi ◽  
Nobuhiko. Ishibashi

Author(s):  
C. S. Chen ◽  
M. M. El-Wakil

This paper presents an experimental and theoretical study of the self-ignition and burning behaviour of drops of hydrocarbon mixtures. In the experimental work, the mass histories, as well as temperature, shape, and flame histories, of drops of heavy hydrocarbon mixtures, suspended on fine thermocouple beads and subjected to heated air streams, were obtained. Due to thermal decomposition and irregular burning, the masses could not be determined from temperature and size and were measured by a liquid-nitrogen quenching technique. Temperature, flame, and shape histories were obtained in the usual manner by thermocouple and photographic means. Drops of grade 6 fuel oil and grade 6 fuel oil minus its asphaltene constituent, of 1·2 and 1·7 mg initial mass, subjected to 1450 and 1600°F air-stream temperatures, were studied. The drop histories can be divided into four phases: (1) pre-ignition, (2) self-ignition and combustion, (3) thermal decomposition, and (4) carbon residue, or cenosphere, burning. The asphaltenes contributed a great deal to burning irregularities but not to burning rates or temperatures. The latter were higher the higher the air temperature, but were affected less by changes in air velocity. In the theoretical work, a generalized treatment predicting the histories of drops undergoing unsteady vaporization, burning, thermal decomposition, or combinations of these was formulated. Based on a spherically symmetric model, governing equations of state, continuity, chemical species conservation, and energy conservation were solved with the aid of simplifying assumptions. A computer program was developed covering a wide range of operating conditions. The theoretical model showed reasonable agreement with the experimental results. A universal plot estimating drop histories of heavy residual fuels was prepared. The distribution of the total heat input into sensible heat, latent heat of vaporization, and endothermic heat of decomposition was also plotted versus dimensionless time.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
P. L. Burnett ◽  
W. R. Mitchell ◽  
C. L. Houck

Natural Brucite (Mg(OH)2) decomposes on heating to form magnesium oxide (MgO) having its cubic ﹛110﹜ and ﹛111﹜ planes respectively parallel to the prism and basal planes of the hexagonal brucite lattice. Although the crystal-lographic relation between the parent brucite crystal and the resulting mag-nesium oxide crystallites is well known, the exact mechanism by which the reaction proceeds is still a matter of controversy. Goodman described the decomposition as an initial shrinkage in the brucite basal plane allowing magnesium ions to shift their original sites to the required magnesium oxide positions followed by a collapse of the planes along the original <0001> direction of the brucite crystal. He noted that the (110) diffraction spots of brucite immediately shifted to the positions required for the (220) reflections of magnesium oxide. Gordon observed separate diffraction spots for the (110) brucite and (220) magnesium oxide planes. The positions of the (110) and (100) brucite never changed but only diminished in intensity while the (220) planes of magnesium shifted from a value larger than the listed ASTM d spacing to the predicted value as the decomposition progressed.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


Author(s):  
J. Barbillat ◽  
M. Delhaye ◽  
P. Dhamelincourt

Raman mapping, with a spatial resolution close to the diffraction limit, can help to reveal the distribution of chemical species at the surface of an heterogeneous sample.As early as 1975,three methods of sample laser illumination and detector configuration have been proposed to perform Raman mapping at the microscopic level (Fig. 1),:- Point illumination:The basic design of the instrument is a classical Raman microprobe equipped with a PM tube or either a linear photodiode array or a two-dimensional CCD detector. A laser beam is focused on a very small area ,close to the diffraction limit.In order to explore the whole surface of the sample,the specimen is moved sequentially beneath the microscope by means of a motorized XY stage. For each point analyzed, a complete spectrum is obtained from which spectral information of interest is extracted for Raman image reconstruction.- Line illuminationA narrow laser line is focused onto the sample either by a cylindrical lens or by a scanning device and is optically conjugated with the entrance slit of the stigmatic spectrograph.


Sign in / Sign up

Export Citation Format

Share Document