Role of Si F groups in enhancing interfacial reaction of Fe-MCM-41 for pollutant removal with ozone

2020 ◽  
Vol 393 ◽  
pp. 122387 ◽  
Author(s):  
Weirui Chen ◽  
Yixiang Bao ◽  
Xukai Li ◽  
Jun Huang ◽  
Jinxin Xie ◽  
...  
2009 ◽  
Vol 142 (3-4) ◽  
pp. 175-180 ◽  
Author(s):  
H. Golinska ◽  
P. Decyk ◽  
M. Ziolek ◽  
J. Kujawa ◽  
E. Filipek

Author(s):  
Abdul Gani Akhmad

This study aims to evaluate the performance of a pilot-scale HSSF-CW utilizing Typha angustifolia and fine sand-gravel media in removing total coliform and TSS from hospital wastewater. Three pilot-scale HSSF-CW cells measuring 1.00 x 0.45 x 0.35 m3 were filled with gravel sand media with a diameter of 5 - 8 mm as high as 35 cm with a submerged media depth of 0.30 m. There were three treatments, namely the first cell (CW1) without plants, the second cell (CW2) was planted with a density of 12 Typha angustifolia plants, and the third cell (CW3) was planted with a density of 24 Typha angustifolia plants. The three HSSF-CW cells received the same wastewater load with total coliform and TSS contents of 91000 MPN / 100 mg and 53 mg / L, respectively, with Hydraulic Loading Rates 3,375 m3 per day. Wastewater was recirculated continuously to achieve the equivalent HSSF-CW area requirement. The experimental results show that the performance of CW3 is more efficient than CW1 and CW2 in total coliform and TSS removal for hospital wastewater. The pollutant removal efficiency at CW3 reached 91.76% for total coliform with one day hydraulic retention time and 81.00% for TSS with two days of hydraulic retention time. This study concludes that the HSSF-CW system using sand-gravel media with a diameter of 5 - 8 mm with a submerged media depth of 0.30 m and planted with Typha angustifolia with a tighter spacing proved to be more efficient in removing total coliform and TSS from hospital wastewater.


2020 ◽  
Vol 12 (14) ◽  
pp. 5559 ◽  
Author(s):  
Munazzam Jawad Shahid ◽  
Ameena A. AL-surhanee ◽  
Fayza Kouadri ◽  
Shafaqat Ali ◽  
Neeha Nawaz ◽  
...  

This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.


2001 ◽  
Vol 44 (7) ◽  
pp. 203-208 ◽  
Author(s):  
K. Yamada ◽  
T. Funaki ◽  
S. Honda ◽  
M. Sugihara

This study aims to clarify the mass balance of pollutants during both dry periods and storm events and to discuss the effects of some strategies such as pollutant removal, land use planning and new drainage systems by simulation. Three subjects are discussed in this paper. First, the amount of pollutants entering Lake Biwa from an urban area have been roughly estimated by using data collected by the local government. Second, many additional samples were collected from road surfaces, house roofs and parking lots to consider the role of land use in pollutant runoff. Third, some ongoing BMP projects in an urban area are introduced. As a result, some ideas on how to solve the problem of diffuse pollution in urban areas have been obtained.


Carbon ◽  
2019 ◽  
Vol 152 ◽  
pp. 986-990 ◽  
Author(s):  
X.N. Mu ◽  
H.N. Cai ◽  
H.M. Zhang ◽  
Q.B. Fan ◽  
X.W. Cheng ◽  
...  

2006 ◽  
Vol 90 (1-3) ◽  
pp. 362-369 ◽  
Author(s):  
Aleksandra Michalska ◽  
Marco Daturi ◽  
Jacques Saussey ◽  
Izabela Nowak ◽  
Maria Ziolek

Sign in / Sign up

Export Citation Format

Share Document