scholarly journals 905 Dysfunction of hair follicle mesenchymal progenitors is associated with age-related hair loss

2019 ◽  
Vol 139 (5) ◽  
pp. S156
Author(s):  
W. Shin ◽  
N. Rosin ◽  
H. Sparks ◽  
S. Sinha ◽  
W. Rahmani ◽  
...  
2020 ◽  
Vol 53 (2) ◽  
pp. 185-198.e7 ◽  
Author(s):  
Wisoo Shin ◽  
Nicole L. Rosin ◽  
Holly Sparks ◽  
Sarthak Sinha ◽  
Waleed Rahmani ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 267
Author(s):  
Kai-Che Wei ◽  
Wan-Ju Wei ◽  
Yi-Shan Liu ◽  
Li-Chen Yen ◽  
Tsung-Hsien Chang

Dengue virus (DENV)-mediated hair loss is one of the post-dengue fatigue syndromes and its pathophysiology remains unknown. Whether long-term or persistent infection with DENV in the scalp results in hair loss is unclear. In this study, we cultured human dermal fibroblasts (WS1 cells) and primary human hair-follicle dermal papilla cells (HFDPCs) in the long term with DENV-2 infection. The production of virion, the expression of inflammatory and anti-virus genes, and their signaling transduction activity in the infected cells were analyzed. DENV-2 NS3 protein and DENV-2 5′ UTR RNA were detected in fibroblasts and HFDPCs that were subjected to long-term infection with DENV-2 for 33 days. A significant amount of DENV-2 virion was produced by both WS1 cells and HFDPCs in the first two days of acute infection. The virion was also detected in WS1 cells that were infected in the long term, but HFDPCs failed to produce DENV-2 after long-term culture. Type I and type III interferons, and inflammatory cytokines were highly expressed in the acute phase of DENV infection in HFPDC and WS1 cells. However, in the long-term cultured cells, modest levels of anti-viral protein genes were expressed and we observed reduced signaling activity, which was correlated with the level of virus production changes. Long-term infection of DENV-2 downregulated the expression of hair growth regulatory factors, such as Rip1, Wnt1, and Wnt4. This in vitro study shows that the long-term infection with DENV-2 in dermal fibroblasts and dermal papilla cells may be involved with the prolonged-DENV-infection-mediated hair loss of post-dengue fatigue syndrome. However, direct evidence for viral replication in the human hair of a dengue victim or animal infection model is required.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 466 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).


2009 ◽  
Vol 297 (5) ◽  
pp. E987-E998 ◽  
Author(s):  
Roberto Vettor ◽  
Gabriella Milan ◽  
Chiara Franzin ◽  
Marta Sanna ◽  
Paolo De Coppi ◽  
...  

The intermuscular adipose tissue (IMAT) is a depot of adipocytes located between muscle bundles. Several investigations have recently been carried out to define the phenotype, the functional characteristics, and the origin of the adipocytes present in this depot. Among the different mechanisms that could be responsible for the accumulation of fat in this site, the dysdifferentiation of muscle-derived stem cells or other mesenchymal progenitors has been postulated, turning them into cells with an adipocyte phenotype. In particular, muscle satellite cells (SCs), a heterogeneous stem cell population characterized by plasticity and self-renewal that allow muscular growth and regeneration, can acquire features of adipocytes, including the abilities to express adipocyte-specific genes and accumulate lipids. Failure to express the transcription factors that direct mesenchymal precursors into fully differentiated functionally specialized cells may be responsible for their phenotypic switch into the adipogenic lineage. We proved that human SCs also possess a clear adipogenic potential that could explain the presence of mature adipocytes within skeletal muscle. This occurs under some pathological conditions (i.e., primary myodystrophies, obesity, hyperglycemia, high plasma free fatty acids, hypoxia, etc.) or as a consequence of thiazolidinedione treatment or simply because of a sedentary lifestyle or during aging. Several pathways and factors (PPARs, WNT growth factors, myokines, GEF-GAP-Rho, p66shc, mitochondrial ROS production, PKCβ) could be implicated in the adipogenic conversion of SCs. The understanding of the molecular pathways that regulate muscle-to-fat conversion and SC behavior could explain the increase in IMAT depots that characterize many metabolic diseases and age-related sarcopenia.


2017 ◽  
Vol 26 (6) ◽  
pp. 471-471 ◽  
Author(s):  
Andrew G Messenger ◽  
Natalia V Botchkareva
Keyword(s):  

2015 ◽  
Vol 5 (2) ◽  
pp. 64-65
Author(s):  
Md Ahsan Shafique

Androgen tic alopecia is a no scarring progressive miniaturization of the hair follicle with a usual characteristic pattern distribution in genetically predisposed men 1. It is the most common hair loss disorder which causes significant impairment of life 2,3. The frequency and severity of male AGA increases with age in all ethnic groups 4.Bangladesh Journal of Dental Research and Education Vol.5(2) 2015: 64-65


Author(s):  
Rachael Williams ◽  
Gillian E. Westgate ◽  
Alison D. Pawlus ◽  
Stephen k Sikkink ◽  
M Julie Thornton

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Alexandra Rippa ◽  
Olga Leonova ◽  
Vladimir Popenko ◽  
Andrey Vasiliev ◽  
Vasily Terskikh ◽  
...  

In adult skin, hair follicles cyclically self-renew in a manner that recapitulates embryonic hair follicle morphogenesis. The most common pathology of hair in adults is alopecia, which is hair loss to different extent. There are a number of murine models of alopecia including spontaneous mutations. In the present study, we worked with double homozygouswe/we wal/walmice which demonstrate symptoms closely resembling human alopecia. Using whole-mount preparations of epidermis of E18.5 embryos we show that hair follicle defects can be revealed as early as during embryonic morphogenesis in these mutants. The number of hair follicles was reduced almost 1.5-fold in mutant skin. The shape of the early stage small follicles was altered in mutant animals as compared to control ones. Additionally, follicles of mutant embryos were wider at the point of conjunction with interfollicular epidermis. We believe that the mutant mice studied represent a fascinating model to address the problem of hair loss. We demonstrated alterations in the morphogenesis of embryonic hair follicle inwe/we wal/waldouble homozygous mice developing alopecia postnatally. We suppose that incorrect morphogenesis of hair follicles during embryogenesis is closely related to alopecia in the adult life. Unveiling the mechanisms involved in altered embryogenesis may elucidate the pathogenesis of alopecia.


2020 ◽  
Vol 10 (14) ◽  
pp. 4996
Author(s):  
Nicole Braun ◽  
Ulrike Heinrich

Hair plays a major role in perception within a society. It provides information about gender, age, health, and social status. It is therefore not surprising that those affected are exposed to great suffering due to the widespread occurrence of hair loss. As a result, the demand for new products to remedy this problem is not diminishing. Hair grows in cycles, and a hair follicle goes through several phases called the hair cycle. The active growth phase (anagen phase) lasts 2–6 years. In this state a hair follicle shows a growth of about 1 cm per month. In order to improve the existing hair status, hair should be kept in the active anagen phase as long as possible, or the transition to anagen should be stimulated. A number of reviews already describe the influence of individual active ingredients on hair growth. However, the following review describes existing studies of complex dietary supplements with their experimental weaknesses and strengths and their influence on hair loss. Also, for the determination of hair loss, it is important to use a valid method with high acceptance by the test persons. In this context, the TrichoScale® is a validated and non-invasive tool for quantifying hair loss/hair growth. Thus, it is an ideal measuring instrument to objectively quantify the effectiveness of a hair loss treatment.


Sign in / Sign up

Export Citation Format

Share Document