The study of ultrasonic vibration assisted polishing optical glass lens with ultrasonic atomizing liquid

2018 ◽  
Vol 34 ◽  
pp. 389-400 ◽  
Author(s):  
Tianbiao Yu ◽  
Jiuhe An ◽  
Xiaozhe Yang ◽  
Xishuai Bian ◽  
Ji Zhao
Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 460
Author(s):  
Canbin Zhang ◽  
Chifai Cheung ◽  
Benjamin Bulla ◽  
Chenyang Zhao

Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness Sa of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness Sa of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface.


2020 ◽  
Vol 10 (2) ◽  
pp. 516 ◽  
Author(s):  
Pei Yi Zhao ◽  
Ming Zhou ◽  
Xian Li Liu ◽  
Bin Jiang

Because of the changes in cutting conditions and ultrasonic vibration status, the proportion of multiple material removal modes are of uncertainty and complexity in ultrasonic vibration-assisted grinding of optical glass. Knowledge of the effect of machined surface composition is the basis for better understanding the influence mechanisms of surface roughness, and also is the key to control the surface composition and surface quality. In the present work, 32 sets of experiments of ultrasonic vibration-assisted grinding of BK7 optical glass were carried out, the machined surface morphologies were observed, and the influence law of machining parameters on the proportion of different material removal was investigated. Based on the above research, the effect of surface composition was briefly summarized. The results indicated that the increasing of spindle rotation speed, the decreasing of feed rate and grinding depth can improve the proportion of ductile removal. The introduction of ultrasonic vibration can highly restrain the powdering removal, and increase the proportion of ductile removal. Grinding depth has a dominant positive effect on the surface roughness, whereas the spindle rotation speed and ultrasonic amplitude both have negative effect, which was caused by the reduction of brittle fracture removal.


2006 ◽  
Vol 315-316 ◽  
pp. 536-540 ◽  
Author(s):  
Ming Zhou ◽  
X.D. Liu ◽  
S.N. Huang

The development of the capability to machine glass materials to optical quality is highly desirable. In this work, the deformation characteristics of brittle materials were analyzed by micro and nano indentations. Diamond cutting of optical glass BK7 was performed in order to investigate the tool wear mechanism in machining of brittle materials and the effect of tool vibration on material removal mechanism. The tool wear mechanism was discussed on the basis of the observation of wear zone. Ductile-mode cutting has easily been achieved with the application of ultrasonic vibration during cutting of glass. It was confirmed experimentally that the tool wear and surface finish were improved significantly by applying ultrasonic vibration to the cutting tool.


2008 ◽  
Vol 375-376 ◽  
pp. 211-215 ◽  
Author(s):  
Hang Zhao ◽  
Ming Zhou

Optical glass is one of the most difficult-to-cut brittle materials due to its high brittleness and high hardness. In this work, an experimental study was conducted to diamond-cut glass SF6 in ductile mode. Nano-indentation analysis was performed for understanding the material deformation behavior in practical cutting process. The effect of process conditions, i.e. conventional turning and ultrasonic vibration assisted cutting, on the tool wear and surface quality was discussed based on the observations of the tool wear zone microstructure and the machined surface topography. The investigation presents the feasibility of achieving optical quality surfaces on glass with the application of ultrasonic vibration cutting technology. The tool life and surface finish were improved significantly by applying ultrasonic vibration to the cutting tool.


Sign in / Sign up

Export Citation Format

Share Document