Interannual variability of the early summer circulation around the Balearic Islands: Driving factors and potential effects on the marine ecosystem

2014 ◽  
Vol 138 ◽  
pp. 70-81 ◽  
Author(s):  
R. Balbín ◽  
J.L. López-Jurado ◽  
M.M. Flexas ◽  
P. Reglero ◽  
P. Vélez-Velchí ◽  
...  
2021 ◽  
pp. 1-48
Author(s):  
Ruud Sperna Weiland ◽  
Karin van der Wiel ◽  
Frank Selten ◽  
Dim Coumou

AbstractPersistent hot-dry or cold-wet summer weather can have significant impacts on agriculture, health and the environment. For North-Western Europe, these weather regimes are typically linked to, respectively, blocked or zonal jetstream states. The fundamental dynamics underlying these circulation states are still poorly understood. Edward Lorenz postulated that summer circulation may be either fully or almost intransitive, implying that part of the phase space (capturing circulation variability) cannot be reached within one specific summer. If true, this would have major implications for the predictability of summer weather and our understanding of the drivers of interannual variability of summer weather. Here, we test the two Lorenz hypotheses (i.e. fully or almost intransitive) for European summer circulation, capitalising on a newly-available, very large ensemble (2000 years) of present-day climate data in the fully-coupled global climate model EC-Earth. Using Self-Organising Maps, we quantify the phase space of summer circulation and the trajectories through phase space in unprecedented detail. We show that, based on Markov assumptions, the summer circulation is strongly dependent on its initial state in early summer with the atmospheric memory ranging from 28 days up to ~45 days. The memory is particularly long if the initial state is either a blocked or a zonal flow state. Furthermore, we identify two groups of summers which are characterised by distinctly different trajectories through phase space, and which prefer either a blocked or zonal circulation state, respectively. These results suggest that intransitivity is indeed a fundamental property of the atmosphere and an important driver of interannual variability.


Ocean Science ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 271-290 ◽  
Author(s):  
Karen Guihou ◽  
Alberto R. Piola ◽  
Elbio D. Palma ◽  
Maria Paz Chidichimo

Abstract. The Humboldt Large Marine Ecosystem (HLME) and Patagonian Large Marine Ecosystem (PLME) are the two largest marine ecosystems in the Southern Hemisphere and are respectively located along the Pacific and Atlantic coasts of southern South America. This work investigates the exchange between these two LMEs and its seasonal and interannual variability by employing numerical model results and offline particle-tracking algorithms. Our analysis suggests a general poleward transport on the southern region of the HLME, a well-defined flux from the Pacific to the Atlantic, and equatorward transport on the PLME. Lagrangian simulations show that the majority of the southern PS waters originate from the upper layer in the southeast South Pacific (<200 m), mainly from the southern Chile and Cape Horn shelves. The exchange takes place through the Le Maire Strait, Magellan Strait, and the shelf break. These inflows amount to a net northeastward transport of 0.88 Sv at 51∘ S in the southern PLME. The transport across the Magellan Strait is small (0.1 Sv), but due to its relatively low salinity it greatly impacts the density and surface circulation of the coastal waters of the southern PLME. The water masses flowing into the Malvinas Embayment eventually reach the PLME through the Malvinas Shelf and occupy the outer part of the shelf. The seasonal and interannual variability of the transport are also addressed. On the southern PLME, the interannual variability of the shelf exchange is partly explained by the large-scale wind variability, which in turn is partly associated with the Southern Annular Mode (SAM) index (r=0.52).


2015 ◽  
Vol 6 (1) ◽  
pp. 19-34 ◽  
Author(s):  
M.K. Sharada ◽  
C.Kalyani Devasena ◽  
P.S. Swathi ◽  
M.V. SundaraDeepthi ◽  
M.K. ShelvaSrinivasan ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 1555-1590 ◽  
Author(s):  
R. He ◽  
K. Chen ◽  
K. Fennel ◽  
G. G. Gawarkiewicz ◽  

Abstract. A size-structured ecosystem model is coupled to a 3-dimensional, high-resolution circulation model to investigate the seasonal and interannual variability of physical and biological states and their driving mechanisms at the shelfbreak front of the Middle Atlantic Bight (MAB). Simulated surface chlorophyll fields compare favorably to the satellite observations and capture the shelfbreak biomass enhancement, which is one of the essential biological features of the region. The domain-wide upper water column nutrient content peaks in late winter-early spring. The phytoplankton spring bloom starts 1–2 months later, followed by a zooplankton bloom in early summer. Seasonal and interannual variability in hindcast shelfbreak nutrient supply is controlled by three processes: (1) local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column; (2) alongshore nutrient transport by the shelfbreak jet and associated currents; and (3) nutrient upwelling associated with shelfbreak bottom boundary layer convergence. Interannual variability of physical and biological processes are highlighted by cross-shelf nutrient budget diagnostics for spring 2004 and 2007, which show not only complex vertical structure of various dynamical terms, but also significant variations in magnitude between the two years.


2020 ◽  
Author(s):  
Apostolia-Maria Mavropoulou ◽  
Vassilios Vervatis ◽  
Sarantis Sofianos

&lt;p&gt;The Mediterranean Sea is characterized by a combination of long-term trends and climatic shifts known in the literature as &amp;#8220;transients&amp;#8221;, that impact the biogeochemical processes. &amp;#160;We focus on the dissolved oxygen (DO) concentration, as it is an essential oceanic parameter for the marine ecosystem functioning. Dissolved oxygen distribution in the ocean interior is controlled by air-sea interaction processes, ocean circulation patterns, and biological effects. Understanding the related mechanisms and the variability of the above processes requires systematic oceanographic measurements over long periods and at high spatial resolution. Taking advantage of the Mediterranean monitoring systems, we can examine the sensitive physical and biogeochemical processes in the Mediterranean ecosystem. In this study, we investigate and combine all available data of temperature, salinity and dissolved oxygen over the period 1960-2011 (taking into consideration the scarcity of the available DO observations during the last years). In order to receive a direct and accurate evaluation of the interannual changes in the Mediterranean Sea, we constructed a gridded dataset interpolated into 1/8&lt;sup&gt;&amp;#959;&lt;/sup&gt; x 1/8&lt;sup&gt;&amp;#959;&lt;/sup&gt; grid using Data-Interpolating Variational Analysis (DIVA). At the surface layer, the solubility-driven changes determine the dissolved oxygen concentration. In deeper layers, the interannual variability is more related to dynamical processes that may involve dense-water convection, biological consumption or mixing, rather than temperature trends. The observed changes in minimum/maximum oxygen zones are mostly related to abrupt shifts. The attribution of the observed variability involves complex physical and biogeochemical processes as well as anthropogenic activities and requires further analysis using modeling techniques and available operational tools.&lt;/p&gt;


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
徐小军 XU Xiaojun ◽  
周国模 ZHOU Guomo ◽  
杜华强 DU Huaqiang ◽  
孙少波 SUN Shaobo ◽  
高国龙 GAO Guolong

Sign in / Sign up

Export Citation Format

Share Document