Thermo-mechanical treatment using resistance heating for production of fine grained heat-treatable aluminum alloy sheets

2006 ◽  
Vol 177 (1-3) ◽  
pp. 444-447 ◽  
Author(s):  
Seijiro Maki ◽  
Minoru Ishiguro ◽  
Ken-Ichiro Mori ◽  
Hiroyasu Makino
2020 ◽  
Vol 326 ◽  
pp. 05004
Author(s):  
Zhiguo Chen ◽  
Chenghua Lu ◽  
Jing Peng ◽  
Zhengui Yuan

The comprehensive performance of Al-Zn-Mg-Cu alloy can be significantly improved by a proposed novel thermo-mechanical treatment (NTMT). The influence of the NTMT on the properties and microstructure was investigated by tensile test, corrosion resistance test, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results show that Al-Zn-Mg-Cu alloy treated by the NTMT can obtain an excellent combination of strength and ductility. The highest yield strength and ultimate tensile strength reached 643 MPa and 664 MPa respectively, and the elongation was 9.7%. Meanwhile, electrochemical corrosion resistance and intergranular corrosion resistance in the aluminum alloy can be improved after the NTMT. The mechanism of the excellent combination of strength and ductility is thought to be the synergistic effect of dislocations substructures, texture configuration, and nanoprecipitates. The improvement of intergranular corrosion resistance of the aluminum alloy is caused by changes in the micro-morphology of grain boundary precipitates after the NTMT, which can block anodic dissolution channels along grain boundaries to reduce the rate of anodic dissolution and avoid hydrogen embrittlement.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1496 ◽  
Author(s):  
Lei Liu ◽  
Yunxin Wu ◽  
Hai Gong

To explore the effective way of grain refinement for 2219 aluminum alloy, the approach of ‘thermal compression tests + solid solution treatment experiments’ was applied to simulate the process of intermediate thermo-mechanical treatment. The effects of deformation parameters (i.e., temperature, strain, and strain rate) on microstructural evolution were also studied. The results show that the main softening mechanism of 2219 aluminum alloy during warm deformation process is dynamic recovery, during which the distribution of CuAl2 phase changes and the substructure content increases. Moreover, the storage energy is found to be decreased with the increase in temperature and/or the decrease in strain rate. In addition, complete static recrystallization occurs and substructures almost disappear during the solid solution treatment process. The average grain size obtained decreases with the decrease in deforming temperature, the increase in strain rate, and/or the increase in strain. The grain refinement mechanism is related to the amount of storage energy and the distribution of precipitated particles in the whole process of intermediate thermal-mechanical treatment. The previously existing dispersed fine precipitates are all redissolved into the matrix, however, the remaining precipitates exist mainly by the form of polymerization.


2007 ◽  
Vol 546-549 ◽  
pp. 1027-1032
Author(s):  
Gao Yong Lin ◽  
Zhen Feng Zhang ◽  
Qi Quan Lin ◽  
Da Shu Peng

A procedure of thermo-mechanical treatment (TMT) was carried out to 2519 aluminum alloy to improve its properties. The influences of cold deformation ratio, ageing temperature and ageing time of the TMT on the mechanical properties and electrochemical corrosion resistance of this alloy were investigated. The results show that after TMT the tensile strength of 2519 aluminum alloy can be improved obviously but its electrochemical corrosion resistance decreases slightly. The optimum processing parameters of the TMT for 2519 aluminum alloy can be described as: solid solution at 530°Cfor 0.5h, then cold deform with a ratio of 15% followed by aging at 150°C for 10h.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1034 ◽  
Author(s):  
Andrey Medvedev ◽  
Alexander Arutyunyan ◽  
Ivan Lomakin ◽  
Anton Bondarenko ◽  
Vil Kazykhanov ◽  
...  

This paper focuses on the mechanical properties, electrical conductivity and fatigue performance of ultra-fine-grained (UFG) Al-Mg-Si wires processed by a complex severe plastic deformation route. It is shown that the nanostructural design via equal channel angular pressing (ECAP) Conform followed by heat treatment and cold drawing leads to the combination of enhanced tensile strength, sufficient ductility, enhanced electrical conductivity, and improved fatigue strength compared to the wires after traditional T81 thermo-mechanical treatment used in wire manufacturing. The Processing-microstructure-properties relationship in the studied material is discussed.


2014 ◽  
Vol 64 (8) ◽  
pp. 353-360 ◽  
Author(s):  
Ken-ichi Ikeda ◽  
Yukimasa Miyata ◽  
Takahiro Yoshihara ◽  
Naoki Takata ◽  
Hideharu Nakashima

2015 ◽  
Vol 24 (10) ◽  
pp. 3905-3911 ◽  
Author(s):  
Xifeng Li ◽  
Kun Lei ◽  
Peng Song ◽  
Xinqin Liu ◽  
Fei Zhang ◽  
...  

2021 ◽  
Author(s):  
Bernd-Arno Behrens ◽  
Kai Brunotte ◽  
Tom Petersen ◽  
Corvin Ostermeyer ◽  
Michael Till

Due to high thermo-mechanical loads, tools used in hot forming operations need a high resistance to different damage phenomena, such as deformation, cracking and abrasion. They are exposed to cyclic thermo-mechanical stress conditions, which leads to tool failure and subsequent tool replacement during cost-intensive production interruptions. To increase wear resistance, forging tools can be produced in the metastable austenite area. Forming of steel below the recrystallisation temperature, also known as “ausforming”, offers the possibility to increase strength without affecting ductile properties. This is due to grain refinement during forming. In this study, the thermo-mechanical treatment ausforming will be used to form the final contour of forging dies. For this purpose, an analogy study was performed where a cup-preform is ausformed, which represents the inner contour of a highly mechanically loaded forging die. It is investigated to what extent a fine-grained microstructure generated in the last forming stage can be achieved and how it influences the tool’s performance. The hot-working tool steel X37CrMoV5-1 (AISI H11) was used as workpiece material. To achieve optimal properties, process routes with tempering temperatures from 300 °C to 500 °C and global true plastic strains of φ = 0.25 and φ = 0.45 were examined. The results were evaluated by pulsation tests, metallographic analysis and hardness measurements of the formed parts. Optimal ausforming parameters were derived to produce a high performance forging die.


2010 ◽  
Vol 638-642 ◽  
pp. 2610-2615 ◽  
Author(s):  
Henryk Dyja ◽  
Bartosz Koczurkiewicz ◽  
Marcin Knapiński

In the present work, low-carbon ultra grained constructional low-alloyed steel were subjected to thermo-mechanical treatment for modification of microstructure. It shows that microstructure after thermo-mechanical treatment is quite dependent on the alloy composition, conditions of hot deformation, grain size of austenite and cooling rate. The research was provide by using the computer program for thermo and thermo – mechanical treatment. The most optimal variant of heat treatment and thermo – mechanical deformation were obtained. The verifications were provided by the dilatometer with possibility of deformation DIL 805A/D.


Sign in / Sign up

Export Citation Format

Share Document