Crystal Structure of the Core Module of the Yeast Paf1 Complex

2021 ◽  
pp. 167369
Author(s):  
Feilong Chen ◽  
Beibei Liu ◽  
Jianwei Zeng ◽  
Lu Guo ◽  
Xuan Ge ◽  
...  
2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Guobang Li ◽  
Xiaoxia Liu ◽  
Mengyuan Yang ◽  
Guangshun Zhang ◽  
Zhengyang Wang ◽  
...  

ABSTRACT African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the “core domain” and the N-terminal “arm domain.” The “arm domain” contains the residues from M1 to N83, and the “core domain” contains the residues from N84 to A273. A structure analysis reveals that the “core domain” shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the “arm domain” is unique to ASFV. Further, experiments indicated that the “arm domain” plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen. IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique “arm domain” has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


2015 ◽  
Vol 39 (11) ◽  
pp. 8291-8301 ◽  
Author(s):  
Jan H. Porada ◽  
Jörg-M. Neudörfl ◽  
Dirk Blunk

The phase behaviour of calamitic indigoid liquid crystals was investigated and rationalised on the basis of a crystal structure analysis.


Author(s):  
Rayya A. Al Balushi ◽  
Muhammad S. Khan ◽  
Md. Serajul Haque Faizi ◽  
Ashanul Haque ◽  
Kieran Molloy ◽  
...  

In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C—H...Cl interactions. Furthermore, C—H...π and π–π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H...H and C...H/H...C interactions.


2005 ◽  
Vol 12 (02) ◽  
pp. 227-232 ◽  
Author(s):  
S. B. GESARI ◽  
B. L. IRIGOYEN ◽  
A. JUAN

We have studied the effect of hydrogen on the cohesion of two types of dislocation in bcc iron at an atomistic level, using the atom superposition and electron delocalization molecular orbital (ASED-MO) method. The most stable positions for one hydrogen at each dislocation core were determined. It was found that the total energy of the cluster decreases when the hydrogen is located at the core. This effect is higher in a mixed dislocation in accordance with the experimental data. The computed results show that hydrogen is a strong embrittler and that a decrease in the Fe–Fe overlap population plays a dominant role in the decohesion of the crystal structure.


1953 ◽  
Vol 57 (513) ◽  
pp. 580-584
Author(s):  
F. M. Owner

The difference in outlook between metallurgist, physicist and designer on the problem of fatigue of metals is due not only to the differences in training and method but also in immediate objective, however closely their ultimate objectives may coincide.Physicists consider fatigue in terms of crystal structure and composition of the constituents of the crystal, noting in passing that certain types of crystal structures are associated with poor fatigue strength. The metallurgist's prime interest lies in the effect of surface finish, heat treatment, the physical condition of the surface, such as degree of cold work, the effect of carburised and nitrided cases having different hardness from the core. Both think in terms of controlled condition tests, with idealised test conditions such as cylindrical test specimens, close control of changes of section, polished surfaces of only a few micro-inches surface roughness, operating in a controlled atmosphere.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1048-C1048
Author(s):  
Chiara Lee ◽  
Hae Joo Kang ◽  
Christoph von Ballmoos ◽  
Simon Newstead ◽  
Povilas Uzdavinys ◽  
...  

Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli, for which both electron microscopy and crystal structures are available. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur. The only reported NhaA crystal structure so far is of the low pH inactivated form. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 200against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general.


2019 ◽  
Vol 18 (3) ◽  
pp. 281-290
Author(s):  
Iwan Susanto ◽  
Nugroho Eko Setijogiarto ◽  
Tia Rahmiati ◽  
Fachruddin Fachruddin ◽  
Arifia Ekayuliana ◽  
...  

The core shell structure of TiO2@SiO2@ferrite(Ni-Cu-Zn) as composite nanoparticles for magnetic photocatalyst were successfully prepared in this study. These particles were synthesized continually by the sol-gel method and they are tested for their performance using MB dye solution. The magnetic core particles used in the synthesis were (Ni-Cu-Zn) ferrite with size of 20-60 nm, while SiO2 and TiO2 layers were formed using tetraethoxysilane and tetrabutly titanate. Some characterizations and testinghavecarried out to investigate the crystal structure, magnetic properties, surface conditions and performance of these particles. The results show that the anatase crystal structure of TiO2 was obtained on the outer shell of the particle, while the magnetization value and surface area were achieved at 4.74 emu/g and 126,831 m2/g, respectively. The nanoparticles of composite size were obtained about 10 to 40 nm with the shell thickness up to 4 nm. The performance results of photodegradation was quite good for reducing MB dye up to 63.37%.


2013 ◽  
Vol 69 (11) ◽  
pp. o1713-o1713
Author(s):  
Thierry Maris

In the crystal structure of the title salt, C16H36N+·CH3BN−, the tetra-n-butylammonium cations and [BH3(CN)]−anions are connectedviaweak C—H...N interactions, forming chains along theb-axis direction. The anion is almost linear with an N—C—B angle of 178.7 (2)°. The C—N—C angle values at the core of the tetra-n-butylammonium cation range from 105.74 (11) to 111.35 (11)° with an average of 109.49 (11)°, close to the ideal tetrahedral value.


Sign in / Sign up

Export Citation Format

Share Document