scholarly journals A backward pre-stressing algorithm for efficient finite element implementation of in vivo material and geometrical parameters into fibril-reinforced mixture models of articular cartilage

Author(s):  
Seyed Shayan Sajjadinia ◽  
Bruno Carpentieri ◽  
Gerhard A. Holzapfel
2020 ◽  
Author(s):  
Marcos Latorre ◽  
Jay D. Humphrey

AbstractConstrained mixture models of soft tissue growth and remodeling can simulate many evolving conditions in health as well as in disease and its treatment, but they can be computationally expensive. In this paper, we derive a new fast, robust finite element implementation based on a concept of mechanobiological equilibrium that yields fully resolved solutions and allows computation of quasi-equilibrated evolutions when imposed perturbations are slow relative to the adaptive process. We demonstrate quadratic convergence and verify the model via comparisons with semi-analytical solutions for arterial mechanics. We further examine the enlargement of aortic aneurysms for which we identify new mechanobiological insights into factors that affect the nearby non-aneurysmal segment as it responds to the changing mechanics within the diseased segment. Because this new 3D approach can be implemented within many existing finite element solvers, constrained mixture models of growth and remodeling can now be used more widely.


2018 ◽  
Vol 7 (3) ◽  
pp. 1640
Author(s):  
Chandrakantha Bekal ◽  
Dr. Hiroshi Yamada ◽  
Dr. Ranjan Shetty ◽  
Dr. Satish Shenoy

Numerical analysis of complex physical environment continues to be preferred over “build and test” approach in product development process. Finite Element Analysis (FEA) of coronary artery stenting is studied and researched worldwide for many years. Potential of using FEA for mimicking in-vivo is high as experimental test is ruled out for variety of reasons. This review aims at discussing issues and challenges of numerical simulation based on part of available literature on usage of FEA techniques for investigating behavior of balloon expandable (BE) coronary stents inside artery. Literatures of past 16 years of study on the structural analysis is summarized and potential issues for research is discussed. Study tries to investigate deployment characteristics and biomechanical response of artery post stenting and significance of non-physiological conditions induced. Effects of geometrical parameters, simulation strategies are summarized. Study mainly underscores the potential challenges of reliable numerical investigation. Scope of FEA in predicting contributor for in-stent restenosis (ISR), a major drawback of stenting procedure, by correlating the engineering aspect of stent design and its clinical significance supported by clinical trials are highlighted. Study is expected to serve as qualitative assessment for cardiologists to minimize procedural failure and quantitative tool for the designers for stent optimization.  


Author(s):  
Christof B. Clemen ◽  
Günther E.K. Benderoth ◽  
Andreas Schmidt ◽  
Frank Hübner ◽  
Thomas J. Vogl ◽  
...  

2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Clare K. Fitzpatrick ◽  
Mark A. Baldwin ◽  
Paul J. Rullkoetter

Finite element methods have been applied to evaluate in vivo joint behavior, new devices, and surgical techniques but have typically been applied to a small or single subject cohort. Anatomic variability necessitates the use of many subject-specific models or probabilistic methods in order to adequately evaluate a device or procedure for a population. However, a fully deformable finite element model can be computationally expensive, prohibiting large multisubject or probabilistic analyses. The aim of this study was to develop a group of subject-specific models of the patellofemoral joint and evaluate trade-offs in analysis time and accuracy with fully deformable and rigid body articular cartilage representations. Finite element models of eight subjects were used to tune a pressure-overclosure relationship during a simulated deep flexion cycle. Patellofemoral kinematics and contact mechanics were evaluated and compared between a fully deformable and a rigid body analysis. Additional eight subjects were used to determine the validity of the rigid body pressure-overclosure relationship as a subject-independent parameter. There was good agreement in predicted kinematics and contact mechanics between deformable and rigid analyses for both the tuned and test groups. Root mean square differences in kinematics were less than 0.5 deg and 0.2 mm for both groups throughout flexion. Differences in contact area and peak and average contact pressures averaged 5.4%, 9.6%, and 3.8%, respectively, for the tuned group and 6.9%, 13.1%, and 6.4%, respectively, for the test group, with no significant differences between the two groups. There was a 95% reduction in computational time with the rigid body analysis as compared with the deformable analysis. The tuned pressure-overclosure relationship derived from the patellofemoral analysis was also applied to tibiofemoral (TF) articular cartilage in a group of eight subjects. Differences in contact area and peak and average contact pressures averaged 8.3%, 11.2%, and 5.7% between rigid and deformable analyses in the tibiofemoral joint. As statistical, probabilistic, and optimization techniques can require hundreds to thousands of analyses, a viable platform is crucial to component evaluation or clinical applications. The computationally efficient rigid body platform described in this study may be integrated with statistical and probabilistic methods and has potential clinical application in understanding in vivo joint mechanics on a subject-specific or population basis.


2020 ◽  
Vol 2020 (10) ◽  
pp. 22-28
Author(s):  
Vadim Kuc ◽  
Dmitriy Gridin

The work purpose was the investigation of dependence impact of tool geometrical parameters upon shaping effort during internal groove cutting. As a realization for the fulfillment of the helical groove processing investigation there was used a software complex based on a finite element method and a computer mathematic system. As a result of the investigations carried out there was obtained a regression equation manifesting the dependence of factors impact upon axial force falling on one tooth of the tool in the set scale of factor parameters. The scientific novelty consists in that in the paper there is considered a new method for helical groove cutting in which a shaping motion is carried out at the expense of the contact interaction of a tool and a billet performing free cutting. The investigation results obtained allowed determining the number of teeth operating simultaneously, that can be used further at cutting mode setting, and also as recommendations during designing tool design.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaohui Zhang ◽  
Shuo Yuan ◽  
Jun Wang ◽  
Bagen Liao ◽  
De Liang

Abstract Background Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM. Methods A detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated. Results Generally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus. Conclusion Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 902
Author(s):  
Susanne N. Wijesinghe ◽  
Mark A. Lindsay ◽  
Simon W. Jones

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


Sign in / Sign up

Export Citation Format

Share Document