Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors

2015 ◽  
Vol 61 ◽  
pp. 243-261 ◽  
Author(s):  
Mehdi Ahmadi ◽  
Amin Nowroozi ◽  
Mohsen Shahlaei
Author(s):  
Sheema Jb ◽  
Waheeta Hopper

  Objective: Glycogen synthase kinase 3 beta (GSK3β) is one of the main targets for wound healing activity. Our objective is to identify novel inhibitors for GSK3β using in silico approach.Methods: Grid-based molecular docking, energy-based pharmacophore (e-pharmacophore) modeling, and molecular dynamics (MD) studies were performed for phytocompounds with GSK3β and compared with standard drugs using Schrodinger software.Results: The glide scores and the molecular interactions of the phytocompounds were well comparable to the standard drugs. The MD was performed for the target bound to the best scoring ligand, entagenic acid. The pharmacophore features of this docked complex were modeled as e-pharmacophore. The constructed e-pharmacophore model was screened against phytocompounds retrieved from literature to identify the ligands with similar pharmacophore features.Conclusion: The glide scores of fukinolic acid, cimicifugic acid, and linarin were −10.99, −8.28, and −7.25 kcal/mol, respectively. The further 50 nanoseconds MD study determined the stability of GSK3β-linarin complex. Nitrofurazone and sulfathiazole drugs can lead to systemic side effects. Hence, it is concluded that linarin could be a potent wound healing compound against GSK3β.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 751-756 ◽  
Author(s):  
Thomas R. Easterwood ◽  
Stephen C. Harvey

Considering the size and complexity of the ribosome and the growing body of data from a wide range of experiments on ribosomal structure, it is becoming increasingly important to develop tools that facilitate the development of reliable models for the ribosome. We use a combination of manual and computer-based approaches for building and refining models of the ribosome and other RNA–protein complexes. Our methods are aimed at determining the range of models compatible with the data, making quantitative statements about the positional uncertainties (resolution) of different regions, identifying conflicts in the data, establishing which regions of the ribosome need further experimental exploration, and, where possible, predicting the outcome of future experiments. Our previous low-resolution model for the small subunit of the Escherichia coli ribosome is briefly reviewed, along with progress on atomic resolution modeling of the mRNA–tRNA complex and its interaction with the decoding site of the 16S RNA.Key words: molecular models, 30S subunit, 16S decoding site, Escherichia coli, tRNA–mRNA complex.


2004 ◽  
Vol 15 (4) ◽  
pp. 647-657 ◽  
Author(s):  
Kirstine L. Anderson ◽  
Jason Billington ◽  
David Pettigrew ◽  
Ernesto Cota ◽  
Peter Simpson ◽  
...  

2012 ◽  
Vol 90 (8) ◽  
pp. 675-692 ◽  
Author(s):  
Premlata K. Ambre ◽  
Raghuvir R. S. Pissurlenkar ◽  
Evans C. Coutinho ◽  
Radhakrishnan P. Iyer

Inhibition of checkpoint kinase-1 (Chk1) by small molecules is of great therapeutic interest in the field of oncology and for understanding cell-cycle regulations. This paper presents a model with elements from docking, pharmacophore mapping, the 3D-QSAR approaches CoMFA, CoMSIA and CoRIA, and virtual screening to identify novel hits against Chk1. Docking, 3D-QSAR (CoRIA, CoMFA and CoMSIA), and pharmacophore studies delineate crucial site points on the Chk1 inhibitors, which can be modified to improve activity. The docking analysis showed residues in the proximity of the ligands that are involved in ligand–receptor interactions, whereas CoRIA models were able to derive the magnitude of these interactions that impact the activity. The ligand-based 3D-QSAR methods (CoMFA and CoMSIA) highlight key areas on the molecules that are beneficial and (or) detrimental for activity. The docking studies and 3D-QSAR models are in excellent agreement in terms of binding-site interactions. The pharmacophore hypotheses validated using sensitivity, selectivity, and specificity parameters is a four-point model, characterized by a hydrogen-bond acceptor (A), hydrogen-bond donor (D), and two hydrophobes (H). This map was used to screen a database of 2.7 million druglike compounds, which were pruned to a small set of potential inhibitors by CoRIA, CoMFA, and CoMSIA models with predicted activity in the range of 8.5–10.5 log units.


2018 ◽  
Author(s):  
Kok Lian Ho ◽  
Mads Gabrielsen ◽  
Poay Ling Beh ◽  
Chare Li Kueh ◽  
Qiu Xian Thong ◽  
...  

AbstractMacrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food-security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here we present an atomic-resolution model of the MrNV capsid protein, calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure confirming the biological relevance of the VLP structure.Our data revealed that unlike other known nodaviruses structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T=3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae. 1. An extensive network of N-terminal arms lines the capsid interior forming long-range interactions to lace together asymmetric units. 2. The capsid shell is stabilised by three pairs of Ca2+ ions in each asymmetric unit. 3. The protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the correct taxonomic classification of MrNV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeynab Fakhar ◽  
Shama Khan ◽  
Suliman Y. AlOmar ◽  
Afrah Alkhuriji ◽  
Aijaz Ahmad

AbstractA new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening workflow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the selected lead compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered lead compounds. Binding energies revealed that compound ABBV-744 binds to the Mpro with strong affinity (ΔGbind −45.43 kcal/mol), and the complex is more stable in comparison with other protein–ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.


2020 ◽  
Author(s):  
Zeynab Fakhar ◽  
Shama Khan ◽  
Aijaz Ahmad

Abstract A new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening work-flow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the best hit compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered compounds. Binding studies revealed that compound ABBV-744 binds to the Mpro with strong affinity (Gbind -45.43 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.


Sign in / Sign up

Export Citation Format

Share Document