scholarly journals Structure of the Macrobrachium rosenbergii Nodavirus: A new genus within the Nodaviridae?

2018 ◽  
Author(s):  
Kok Lian Ho ◽  
Mads Gabrielsen ◽  
Poay Ling Beh ◽  
Chare Li Kueh ◽  
Qiu Xian Thong ◽  
...  

AbstractMacrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food-security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here we present an atomic-resolution model of the MrNV capsid protein, calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure confirming the biological relevance of the VLP structure.Our data revealed that unlike other known nodaviruses structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T=3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae. 1. An extensive network of N-terminal arms lines the capsid interior forming long-range interactions to lace together asymmetric units. 2. The capsid shell is stabilised by three pairs of Ca2+ ions in each asymmetric unit. 3. The protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the correct taxonomic classification of MrNV.




2020 ◽  
Vol 19 (1) ◽  
pp. 10-18
Author(s):  
Megawati Wijaya ◽  
Agus Oman Sudrajat ◽  
Imron

ABSTRACT One of the main problem in giant river prawn (GFP) culture is early gonadal maturation in female resulting a reduced growth performance. This problem cause economic losses. When GFP at gonadal maturation, somatic growth will be inhibited because energy is used for reproduction. A factorial experimental design using two factors, namely dopamine and medroxyprogesterone, with each factor consist of three levels was applied. Three dopamine levels were 0, 10-5 mol/shrimp, and 10-10 mol/shrimp, while the medroxyprogesterone levels were 0, 75 mg/1.5 mL/bodyweight, and 150 mg/3 mL/bodyweight with a density 15 individual/tank. The utilization of dopamine and medroxyprogesterone in GFP (initial bodyweight : 11.27 ± 0.97 g) through injection at the third periopod was done three times at week 0, 2nd, and 4th with two weeks interval. The results showed that hormone inhibitor treatments affected both growth and reproductive performances in female GFP. The treated individuals showed a lower gonadal maturity indicator values and faster growth rate than control. Gonadal maturity, as shown by gonad histology, in all treatments were lower (previtelogenic and vitellogenic stages) than that in control which is in mature stage. Estradiol concentration premix dopamine 10-10 mol/shrimp and medroxyprogesterone 150 mg/3 mL/bodyweight treatments are lower than control. In conclusion, dopamine and medroxyprogesterone administration could suppres GSI and gonad development, and also increase growth rate. Keywords: Macrobrachium rosenbergii, dopamine, medroxyprogesterone, gonad development, growth.



2017 ◽  
Author(s):  
Kok Lian Ho ◽  
Chare Li Kueh ◽  
Poay Ling Beh ◽  
Wen Siang Tan ◽  
David Bhella

AbstractWhite tail disease in the giant freshwater prawn Macrobrachium rosenbergii causes significant economic losses in shrimp farms and hatcheries and poses a threat to food-security in many developing countries. Outbreaks of Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white tail disease (WTD) are associated with up to 100% mortality rates. Recombinant expression of the capsid protein of MrNV in insect cells leads to the production of VLPs closely resembling the native virus. We have investigated the structure of MrNV VLPs by cryogenic electron microscopy, determining a structure of the viral capsid at 7 angstroms resolution. Our data show that MrNV VLPs package nucleic acids in a manner reminiscent of other known nodavirus structures. The structure of the capsid however shows striking differences from insect and fish infecting nodaviruses, which have been shown to assemble trimer-clustered T=3 icosahedral virus particles. MrNV particles have pronounced dimeric blade-shaped spikes extending up to 6 nm from the outer surface of the capsid shell. Our structural analysis supports the assertion that MrNV along with the related virus of marine shrimp Penaeus vannamei nodavirus (PvNV) may represent a new genus of the Nodaviridae.Author summaryMacrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which leads to 100% mortality in shrimp-farms growing giant freshwater prawn (M. rosenbergii). MrNV is therefore a significant threat to food security and causes severe economic losses in developing countries such as Malaysia, Indonesia, Pakistan, Thailand and India. Here we have used electron microscopy to study the three-dimensional structure of MrNV, revealing that the viral capsid – the protein shell that encloses the viral genome, protecting it and transporting it from one host to the next – is differently organised to capsids produced by other viruses in the nodavirus family. The virus was found to have large blade-like spikes on its outer surface that are likely important in the early stages of infection, when the virus attaches to and enters a host cell.



Author(s):  
Kaiming Zhang ◽  
Grigore D. Pintilie ◽  
Shanshan Li ◽  
Michael F. Schmid ◽  
Wah Chiu

AbstractBreakthroughs in single-particle cryo-electron microscopy (cryo-EM) technology have made near-atomic resolution structure determination possible. Here, we report a ∼1.35-Å structure of apoferritin reconstructed from images recorded on a Gatan K3 or a Thermo Fisher Falcon 4 detector in a commonly available 300-kV Titan Krios microscope (G3i) equipped with or without a Gatan post-column energy filter. Our results demonstrate that the atomic-resolution structure determination can be achieved by single-particle cryo-EM with a fraction of a day of automated data collection. These structures resolve unambiguously each heavy atom (C, N, O, and S) in the amino acid side chains with an indication of hydrogen atoms’ presence and position, as well as the unambiguous existence of multiple rotameric configurations for some residues. We also develop a statistical and chemical based protocol to assess the positions of the water molecules directly from the cryo-EM map. In addition, we have introduced a B’ factor equivalent to the conventional B factor traditionally used by crystallography to annotate the atomic resolution model for determined structures. Our findings will be of immense interest among protein and medicinal scientists engaging in both basic and translational research.



Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.



Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.







Heliyon ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e05898
Author(s):  
Tipsuda Thongbuakaew ◽  
Chanudporn Sumpownon ◽  
Attakorn Engsusophon ◽  
Napamanee Kornthong ◽  
Charoonroj Chotwiwatthanakun ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document