Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia

2009 ◽  
Vol 321 (10) ◽  
pp. 1493-1496 ◽  
Author(s):  
Makoto Suto ◽  
Yasutake Hirota ◽  
Hiroaki Mamiya ◽  
Asaya Fujita ◽  
Ryo Kasuya ◽  
...  
2009 ◽  
Vol 33 (4) ◽  
pp. 391-395 ◽  
Author(s):  
M. Suto ◽  
Y. Hirota ◽  
H. Mamiyak ◽  
R. Kasuya ◽  
A. Fujita ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4644 ◽  
Author(s):  
Arkadiusz Miaskowski ◽  
Mahendran Subramanian

This paper aims to apply a proposed, based on calorimetric measurements, a reliable numerical model for magnetic fluid hyperthermia (MFH) treatment planning of breast cancer. Furthermore, we perform a comparative analysis of magnetic nanoparticles (MNPs) and tumour tissue interactions by means of the magnetic-field-dependent Néel and Brownian relaxation times. The analysis was based on an anatomically correct breast model (developed in-house) and a modified linear response theory, which was applied to investigate the heat dissipation from the magnetic nanoparticles dispersed in the breast tumour. The calculations of the single-domain magnetic power losses were conducted for a case where the magnetic field value and the applied frequency were known, but also for the different concentrations of the MNPs in the tumour. Two scenarios were considered: The MNPs mobilised and immobilised in the tumour. In parallel, the eddy currents effect, together with the related temperature distributions, were considered in order to analyse safety issues. By changing the MNP concentration in the tumour, the corresponding temperature distributions were calculated. The eddy current effect, together with the related temperature distribution, were considered in order to analyse safety issues. Varying the MNP concentration in the tumour, the corresponding temperature distribution was calculated. Moreover, the cumulative equivalent minutes at 43   ℃ were analysed. In the anatomically correct breast phantoms, the tissue location can lead to “hot spots” due to the eddy current effect and subsequently to the high gradients of the temperature. That is why the analysis of safety issues related to the overheating side effect should be taken into consideration during the treatment planning of magnetic fluid hyperthermia. The phenomenon of heat dissipation from MNPs is very sophisticated and depends on their concentration, the distribution and the relaxation mechanism in the tumour, together with magnetic field strength and frequency. Furthermore, we inferred that the phenomenon of heat dissipation from MNPs equally depends on MNP-tissue interactions, and it can lead to 30% differences in the power assessment. Nevertheless, the aforementioned factors should be considered in parallel using anatomical, volume-dependent models to enhance the efficiency of in vivo treatment.


Author(s):  
Junfeng Jiang ◽  
Ruoyu Hong ◽  
Xiaohui Zhang ◽  
Hongzhong Li

Hyperthermia therapy for cancer has attracted much attention nowadays. The study on the heat transfer in the magnetic fluid and the tumor is crucial for the successful application of magnetic fluid hyperthermia (MFH). Water-based Fe3O4 magnetic fluid is expected to be a most appropriate candidate for MFH due to the good biocompatibility, high saturation magnetization, super-paramagnetization and high chemical stability. In this paper, we explore the heat generation and transfer in magnetic fluid which is placed under an AC magnetic field. It is found that the amplitude and the frequency of alternating magnetic field, particle size and volume fraction have a pronounce influence on maximum temperature of hyperthermia.


Sign in / Sign up

Export Citation Format

Share Document