scholarly journals Physical property and failure mechanism of self-piercing riveting joints between foam metal sandwich composite aluminum plate and aluminum alloy

Author(s):  
Zhi-Chao Huang ◽  
Yu-Kuan Zhang ◽  
Yong-Cheng Lin ◽  
Yu-Qiang Jiang
2018 ◽  
Vol 10 (03) ◽  
pp. 1850029 ◽  
Author(s):  
Jingchuan Li ◽  
Lihong Liang ◽  
Xiaoming Liu ◽  
Hansong Ma ◽  
Jingru Song ◽  
...  

In the present research, we carry out a systematical experimental investigation on the strength, toughness and failure mechanism of the metal/silicone rubber/metal bonding system. For the case of the aluminum alloy cylinder/silicone rubber/aluminum alloy cylinder bonding system, we measure the tensile deformation and failure behaviors, including the dependence of the failure loading on the adhesive layer thickness and scarf angle. Through introducing a series of definitions, such as average normal stress, average shear stress, average normal strain and average shear strain, along the bonding interface, we realize the measurements on interfacial failure strength, and obtain the relationship between the interfacial strength and the interfacial scarf angle as well as adhesive layer thickness, and we further obtain the failure strength surface, interfacial fracture energy, as well as the energy release rate for the bonding system. The obtained results can provide a scientific basis for deeply understanding the strength and toughness properties as well as the failure mechanism of the metal-adhesive bonding system, and have an important guidance on optimization design and property evolution of the bonding system.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012109
Author(s):  
Hongming Liu

Abstract In order to study the application of nonlinear ultrasonic in the quantitative identification of defective aluminum plate, different depth cracks are machined on the aluminum alloy plate with a thickness of 10 mm by wire cutting to simulate the defects in the plate. The normal and defective aluminum plates are selected to establish the experimental model, and the continuous wavelet transform (CWT) is used to extract the characteristic parameters of the aluminum plate nonlinear ultrasonic signal. The dimensions of the data are reduced by principal component analysis (PCA), and the principal component with the top three contribution rate are selected as the characteristic value. Finally, the support vector machine (SVM) algorithm is used to analyze the aluminum alloy plate state and classify the defect signal. The experimental results show that the feasibility of nonlinear ultrasonic signal recognition of aluminum plate defects is verified by combining principal component analysis and support vector machine model.


1987 ◽  
Vol 21 (2) ◽  
pp. 181-185 ◽  
Author(s):  
C.P. You ◽  
A.W. Thompson ◽  
I.M. Bernstein

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1655 ◽  
Author(s):  
Xiaoyan Liu ◽  
Jiacheng Wu ◽  
Jiaojiao Xi ◽  
Zhiqiang Yu

Fiber-reinforced epoxy sandwich composites, which were designed as the bonded repair patches to better recover the mechanical performance of a central cracked aluminum alloy plate, were layered by carbon and aramid fiber layers jointly and cured by microwave method in this study. The static tensile and bending properties of both carbon-aramid fiber/epoxy sandwich composite patches and the cracked aluminum alloy plates after bonded repair were systematically investigated. By comparing the mechanical performance with traditional single carbon-fiber-reinforced composite patches, it can be found that the bending performance of carbon-aramid fiber sandwich composite patches was effectively improved after incorporation of flexible aramid fiber layers into the carbon fiber layers, but the tensile strength of sandwich composite patches was weakened to some extent. Especially, the sandwich patches with 3 fiber layers exhibited better tensile and bending performance in comparison to patches of 5 and 7 fiber layers. The optimized 3-layer carbon-aramid fiber sandwich patch repaired plate recovered 86% and 190% of the tensile and bending performance in comparison to the uncracked ones, respectively, showing a considerable repair majorization effect for the cracked aluminum alloy plate.


Author(s):  
Hongwei Zhu ◽  
Changfang Zhao

The aim of this work was to study the anti-penetration effect of sandwich composite armor with ceramic honeycomb structures filled with aluminum alloy under the impact of high-speed projectiles. The finite element software ABAQUS was used to conduct numerical simulation research on the process of a standard 12.7-mm projectile penetrating sandwich composite armor. The armor-piercing projectile model was simplified as a rigid body. The numerical simulation models were applied to three different sandwich composite armor structures (A, B, and C), each with a total armor thickness of 25 mm. The penetration resistance of the three kinds of composite armor was studied. We obtained velocity curves for the rigid projectile penetrating the different structures. The failure forms and penetration resistance characteristics of the three composite armor structures adopted in this paper were analyzed. In addition, the velocity reduction ratio is proposed as an index to evaluate the penetration resistance performance of the armor. The simulation results revealed decreasing rates of projectile speed in the structures A, B, and C of 69.6%, 91.1%, and 100%, respectively. The third composite armor (structure C) designed here has excellent penetration resistance and can block the penetration of a high-speed (818m/s) rigid projectile. This study can provide some reference for the application of laminated armor material in anti-penetration protection structures.


2012 ◽  
Vol 189 ◽  
pp. 130-133
Author(s):  
De Bin Chen ◽  
Hui E Hu ◽  
Xiao Dong Kong

Plastic anisotropy of the as-rolled 7050 aluminum alloy plate with T7451 temper was investigated by tensile tests, OM, SEM and TEM. The results show that the as-rolled 7050 aluminum alloy plate shows plastic anisotropy. The values of the as-rolled 7050 aluminum alloy plate deformed along ST, LT and RD are 7.178%, 10.69% and 12.877%, respectively. The as-rolled 7050 aluminum plate can be considered as a materials with two phases. Microstructure, especially grain shape and precipitate configuration, is the main source of plastic anisotropy of the as-rolled 7050 aluminum alloy plate with T7451 temper.


Sign in / Sign up

Export Citation Format

Share Document