Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices

2020 ◽  
Vol 45 ◽  
pp. 241-247 ◽  
Author(s):  
Tao Liu ◽  
Caizhen Zhu ◽  
Wei Wu ◽  
Kai-Ning Liao ◽  
Xianjing Gong ◽  
...  
2020 ◽  
Vol 59 (12) ◽  
pp. 125001
Author(s):  
Nan Ye ◽  
Satoka Ohnishi ◽  
Mitsuhiro Okada ◽  
Kazuto Hatakeyama ◽  
Kazuhiko Seki ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


2021 ◽  
pp. 1-1
Author(s):  
Valliammai Palaniappan ◽  
Masoud Panahi ◽  
Dinesh Maddipatla ◽  
Xingzhe Zhang ◽  
Simin Masihi ◽  
...  

2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Hanglin Lu ◽  
Yalan Niu ◽  
Jian Tang ◽  
Li Yang ◽  
Laipeng Shao ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4169
Author(s):  
Gennady Gorokh ◽  
Natalia Bogomazova ◽  
Abdelhafed Taleb ◽  
Valery Zhylinski ◽  
Timur Galkovsky ◽  
...  

The process of layer-by-layer ionic deposition of tin-tungsten oxide films on smooth silicon substrates and nanoporous anodic alumina matrices has been studied. To achieve the film deposition, solutions containing cationic SnF2 or SnCl2 and anionic Na2WO4 or (NH4)2O·WO3 precursors have been used. The effect of the solution compositions on the films deposition rates, morphology, composition, and properties was investigated. Possible mechanisms of tin-tungsten oxide films deposition into the pores and on the surface of anodic alumina are discussed. The electro-physical and gas-sensitive properties of nanostructured SnxWyOz films have been investigated. The prepared nanocomposites exhibit stable semiconductor properties characterized by high resistance and low temperature coefficient of electrical resistance of about 1.6 × 10−3 K−1. The sensitivity of the SnxWyOz films to 2 and 10 ppm concentrations of ammonia at 523 K was 0.35 and 1.17, respectively. At concentrations of 1 and 2 ppm of nitrogen dioxide, the sensitivity was 0.48 and 1.4, respectively, at a temperature of 473 K. At the temperature of 573 K, the sensitivity of 1.3 was obtained for 100 ppm of ethanol. The prepared nanostructured tin-tungsten oxide films showed promising gas-sensitivity, which makes them a good candidate for the manufacturing of gas sensors with high sensitivity and low power consumption.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Matthias Bäcker ◽  
Arshak Poghossian ◽  
Maryam H. Abouzar ◽  
Sylvia Wenmackers ◽  
Stoffel D. Janssens ◽  
...  

AbstractCapacitive field-effect electrolyte-diamond-insulator-semiconductor (EDIS) structures with O-terminated nanocrystalline diamond (NCD) as sensitive gate material have been realized and investigated for the detection of pH, penicillin concentration, and layer-by-layer adsorption of polyelectrolytes. The surface oxidizing procedure of NCD thin films as well as the seeding and NCD growth process on a Si-SiO2 substrate have been improved to provide high pH-sensitive, non-porous thin films without damage of the underlying SiO2 layer and with a high coverage of O-terminated sites. The NCD surface topography, roughness, and coverage of the surface groups have been characterized by SEM, AFM and XPS methods. The EDIS sensors with O-terminated NCD film treated in oxidizing boiling mixture for 45 min show a pH sensitivity of about 50 mV/pH. The pH-sensitive properties of the NCD have been used to develop an EDIS-based penicillin biosensor with high sensitivity (65-70 mV/decade in the concentration range of 0.25-2.5 mM penicillin G) and low detection limit (5 μM). The results of label-free electrical detection of layer-by-layer adsorption of charged polyelectrolytes are presented, too.


Sign in / Sign up

Export Citation Format

Share Document