Multi-Action Self-Healing Coatings with Simultaneous Recovery of Corrosion Resistance and Adhesion Strength

Author(s):  
Chenhao Ren ◽  
Yao Huang ◽  
Wenkui Hao ◽  
Dawei Zhang ◽  
Xiejing Luo ◽  
...  
2021 ◽  
Vol 417 ◽  
pp. 127208
Author(s):  
Yue Gong ◽  
Jiwei Geng ◽  
Jie Huang ◽  
Zhe Chen ◽  
Mingliang Wang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Marija Riđošić ◽  
Nebojša D. Nikolić ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Electrodeposition and characterization of novel ceria-doped Zn-Co composite coatings was the main goal of this research. Electrodeposited composite coatings were compared to pure Zn-Co coatings obtained under the same conditions. The effect of two ceria sources, powder and home-made sol, on the morphology and corrosion resistance of the composite coatings was determined. During the electrodeposition process the plating solution was successfully agitated in an ultrasound bath. The source of the particles was found to influence the stability and dispersity of plating solutions. The application of ceria sol resulted in an increase of the ceria content in the resulting coating and favored the refinement from cauliflower-like morphology (Zn-Co) to uniform and compact coral-like structure (Zn-Co-CeO2 sol). The corrosion resistance of the composite coatings was enhanced compared to bare Zn-Co as evidenced by electrochemical impedance spectroscopy and scanning Kelvin probe results. Zn-Co doped with ceria particles originating from ceria sol exhibited superior corrosion resistance compared to Zn-Co-CeO2 (powder) coatings. The self-healing rate of artificial defect was calculated based on measured Volta potential difference for which Zn-Co-CeO2 (sol) coatings exhibited a self-healing rate of 73.28% in a chloride-rich environment.


2021 ◽  
pp. 088532822110125
Author(s):  
Tuyet Thi Anh Ngo ◽  
Sachiko Hiromoto ◽  
Linh Chi Do ◽  
Hanh Hong Pham ◽  
Le Hanh

Hydroxyapatite (HAp) and octacalcium phosphate (OCP) layers were formed on Mg- 4mass% Y- 3mass% rare earth (WE43) alloy by a chemical solution deposition method at various pH values of pH 5.5, 6.2, 7.5, and 8.6. Adhesion strength of HAp and OCP layers was evaluated before and after immersing in a medium for 14 days by a pull-off test. The corrosion resistance of these coatings was measured by polarization tests performed in a simulated body fluid (SBF). XRD analysis demonstrated that HAp coating layers were formed at pH 7.5 and 8.6, while OCP coating layers were formed at pH 5.5 and 6.2. Adhesion test results showed that the as-coated pH7.5-HAp layer had the highest adhesion strength of 8.6 MPa, which was attributed to the very dense structure of the coating layer. The as-coated pH8.6-HAp layer showed the adhesion strength of 6.5 MPa. The adhesion strength of the as-coated pH5.5- and pH6.2-OCP layers was 3.9 and 7.1 MPa, respectively, that was governed by the thick and fragile property of the layers. After immersing in the medium for 14 days, the adhesion strength of pH7.5- and pH8.6-specimens decreased to 5.8 and 5.6 MPa, respectively. The pitting corrosion and formation of Mg(OH)2 under the HAp layers were responsible for the decrease of adhesion strength. The polarization tests in SBF at 37 °C showed that the corrosion current density decreased with the HAp and OCP coatings, indicating the improvement of the corrosion resistance of WE43 alloy. The HAp coatings improved the corrosion resistance more efficiently than the OCP coatings.


Author(s):  
Muddasir Nawaz ◽  
Sehrish Habib ◽  
Adnan Khan ◽  
Abdul Shakoor ◽  
Ramazan Kahraman

The use of organic coating for the metals has been widely being used to protect the surface against corrosion. Polymeric coating incorporated with Nanocontainers loaded with inhibitor and self-healing provides better corrosion resistance. Cellulose microfibers (CMFs) used as smart carriers were synthesized and loaded with dodecylamine (DOC)-inhibitor and polyethyleneimine (PEI)-both inhibitor and self-healing agents. Smart polymeric coatings were developed by mixing CMF/DOC and CMFs/PEI into the epoxy matrix. Reference coatings (that has only CMFs) were also prepared for a compersion. Scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal gravitational analysis (TGA) were used to confirm the loading of DOC and PEI onto the CMFs. UV-vis analysis indicates that the self-release of inhibitor from CMFs is sensitive to pH of the solution and the immersion time. Recovery of controlled surface damage confirms the decent self-healing ability of the prepared smart coatings is due to the efficient release of inhibitor (DOC) and self-healing agent (PEI) in the damaged area leading to the formation of a protective film. Electrochemical impedance spectroscopy (EIS) results demonstrate that corrosion resistance of the smart coating increases with an increase in immersion time which is due to the progressive release of inhibitors from CMFs in response to the pH change. Therefore, smart coatings demonstrate superior properties as compared to the reference coatings. The study reveals the polymeric composite coatings have potential to inhibit the corrosion of steel for oil and gas industry.


Sign in / Sign up

Export Citation Format

Share Document