Pore structure characterization and permeability prediction of coal samples based on SEM images

2019 ◽  
Vol 67 ◽  
pp. 160-171 ◽  
Author(s):  
Shuai-Bing Song ◽  
Jiang-Feng Liu ◽  
Dian-Sen Yang ◽  
Hong-Yang Ni ◽  
Bing-Xiang Huang ◽  
...  
2019 ◽  
Author(s):  
Yixin Zhang ◽  
Rouzbeh Ghanbarnezhad Moghanloo ◽  
Davud Davudov

Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119915
Author(s):  
Yuzhu Wang ◽  
Shuyu Sun

Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 806
Author(s):  
Michalina Ehlert ◽  
Aleksandra Radtke ◽  
Katarzyna Roszek ◽  
Tomasz Jędrzejewski ◽  
Piotr Piszczek

The surface modification of titanium substrates and its alloys in order to improve their osseointegration properties is one of widely studied issues related to the design and production of modern orthopedic and dental implants. In this paper, we discuss the results concerning Ti6Al4V substrate surface modification by (a) alkaline treatment with a 7 M NaOH solution, and (b) production of a porous coating (anodic oxidation with the use of potential U = 5 V) and then treating its surface in the abovementioned alkaline solution. We compared the apatite-forming ability of unmodified and surface-modified titanium alloy in simulated body fluid (SBF) for 1–4 weeks. Analysis of the X-ray diffraction patterns of synthesized coatings allowed their structure characterization before and after immersing in SBF. The obtained nanolayers were studied using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and scanning electron microscopy (SEM) images. Elemental analysis was carried out using X-ray energy dispersion spectroscopy (SEM EDX). Wettability and biointegration activity (on the basis of the degree of integration of MG-63 osteoblast-like cells, L929 fibroblasts, and adipose-derived mesenchymal stem cells cultured in vitro on the sample surface) were also evaluated. The obtained results proved that the surfaces of Ti6Al4V and Ti6Al4V covered by TiO2 nanoporous coatings, which were modified by titanate layers, promote apatite formation in the environment of body fluids and possess optimal biointegration properties for fibroblasts and osteoblasts.


Author(s):  
Yuxiang Zhang ◽  
Shenglai Yang ◽  
Zheng Zhang ◽  
Qian Li ◽  
Hui Deng ◽  
...  

2012 ◽  
Vol 42 (1) ◽  
pp. 194-204 ◽  
Author(s):  
Qiang Zeng ◽  
Kefei Li ◽  
Teddy Fen-chong ◽  
Patrick Dangla

Fuel ◽  
2018 ◽  
Vol 234 ◽  
pp. 626-642 ◽  
Author(s):  
Yiwen Ju ◽  
Ying Sun ◽  
Jingqiang Tan ◽  
Hongling Bu ◽  
Kui Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document