An innovative ventilation system using piston wind for the thermal environment in Shanghai subway station

2020 ◽  
Vol 32 ◽  
pp. 101276 ◽  
Author(s):  
Guoqing Li ◽  
Xin Meng ◽  
Xiaowei Zhang ◽  
Ling Zhang ◽  
Chenqiu Du ◽  
...  
2011 ◽  
Vol 250-253 ◽  
pp. 3107-3114
Author(s):  
Hong Ming Fan ◽  
Kai Yuan He ◽  
Zhi Fang Yin ◽  
Dan Zhang

The typical subway island-platform of Beijing as research object was present in the article. Taking two-equation turbulence model and giving boundary conditions of piston wind and train heat load change with the time, adopting numerical method simulates air distribution of air-conditioning and ventilation system in subway. The results indicate that piston wind effect has significant impact on the area of platform entrance and staircase entrance while station with safety doors can obstruct piston effect at a certain degree. Simultaneity, the supply- exhaust air system offers relatively uniform temperature and velocity field, which meets requirements of transitory comfort for passengers. It is found that numerical simulation method can simulate and forecast air distribution of air conditioning and ventilating system in subway station. In conclusion, it can provide the reference for optimizing air-conditioning and ventilation system, improving thermal environment designing of subway station.


2011 ◽  
Vol 374-377 ◽  
pp. 702-705
Author(s):  
Wei Feng ◽  
Hui Min Li

In the underground building, Light environment and thermal environment is poorer, in order to improve the problem, this paper brings forward a new type of lighting and ventilation system model; discusses the principle and characteristics of transmission; and analyses the question that influences lighting and ventilated effect in the application. Structure design and numerical simulation is the focus of the next step.


2019 ◽  
Vol 111 ◽  
pp. 01085
Author(s):  
Hiroshi Muramatsu ◽  
Tatsuo Nobe

In this study, an office building in Japan that incorporates energy-saving features and environmental technologies was investigated. This office building features a green façade, natural ventilation, a concrete slab with no suspended ceilings, and thermo-active building systems. Two airconditioning systems were installed in this building—a ceiling radiation air-conditioning system and a whole floor-blow off air conditioning system. In addition, a natural ventilation system was installed. We surveyed the heat flux of the ceiling surface and indoor thermal environment of this building from 2015 through 2016. The ceiling using the heat storage amount of concrete maintains a constant temperature in the workplace during as well as after office hours. We also performed detailed measurements of the heat flux of the ceiling surface and indoor thermal environment in the summer of 2017. The results showed that the ceiling radiation air-conditioning system provided a stable thermal environment. Furthermore, we report that making use of the thermal behavior of the skeleton improved the operation of the ceiling radiation airconditioning system.


2014 ◽  
Vol 700 ◽  
pp. 239-244
Author(s):  
Wen Jie Chen ◽  
Lei Chong ◽  
Jian Ru Liang ◽  
Ming Lai Yang

Everyday there are about 7 million passengers commuting by subway in Shanghai, China. Although Shanghai has one of the largest subway networks in the world, yet this subway system is still full of passengers during the rush hours. Extracting air and smoke is important part of the station ventilation system which supplies enough fresh air in the crowded station. As we know, the underground subway stations are built in an enclosed space where needs air circulation far more than other type of station. This paper focuses on the designs of duct layout and valve control in an underground subway station. The authors give three solutions to return air and exhaust smoke in the underground station platform area and entrance area. The goal of this paper is to compare these three ventilation solutions in the normal time and in the fire accident. The result of analyzing and applying these solutions are concluded in the paper.


2013 ◽  
Vol 353-356 ◽  
pp. 3025-3028
Author(s):  
Pei Hong Zhang ◽  
Lei Xin Yu ◽  
Jian Wang

in order to study the piston wind and its effect on the thermal environment and velocity field in island subway station platform with full-height non-enclosed screen doors, a number of field measurements were taken at the platform of century station of metro line 2 in Shenyang from Oct. 2012 to Mar. 2013. The test results show that the full-height non-enclosed screen doors enhances the heat transfer between the platform and the tunnel, the effect of piston wind increases the average temperature of platform by 0.7°C-1.4°C. Meanwhile, the full-height non-enclosed screen doors prevent the piston wind from entering into the platform effectively. The wind speed of the platform fluctuates between 0.25~0.52m/s when no train enters or leaves the platform, increasing slightly under the effect of the outdoor wind velocity. When one-way train goes into and out of the site, the maximum wind speed reaches up to 2.2m/s at the working area of platform. While, the wind speed of the stair section shows cyclical shocks between 1.2m/s ~ 1.7m/s with the amplitude attenuates gradually.The two-way train caused the the maximum wind speed up to 2m/s with the duration of 220s.


2020 ◽  
Vol 3 (1) ◽  
pp. p1
Author(s):  
Jad Hammoud ◽  
Elise Abi Rached

The increasing of energy demands has considerably increased the requirements for new and traditional buildings in different climate zones. Unprecedented heat waves have increased climate temperature, in particular, in moderate climate zones such as Lebanon. In Beirut, only the residential sector consumes 50% of total electricity consumption. HVAC (Heating, Ventilation and Air conditioning) systems are used to reach acceptable thermal comfort levels in the new residential buildings. In case of the traditional bourgeoisie houses in Beirut, there are no discussions about the use of HVAC systems to achieve the required thermal comfort level. Thus, to reach an acceptable thermal comfort level, these houses which already contain natural ventilation system shall adapt the modern thermal comfort requirements and thermal comfort strategies and technologies where their architectural features and existing materials condition the available solutions. In order to identify the best options within the possible intervention lines (envelopes, passive strategies, equipment, renewable energy systems), it is necessary to perceive the real performance of this type of houses. In this context, the article presents the results of the study of thermal performance and comfort in a three case studies located in Beirut. Detailed field data records collected are analyzed, with a view to identify the indoor thermal environment with respect to outdoor thermal environment in different seasons. Monitoring also included measurement of hygrothermal parameters and surveys of occupant thermal sensation.


2021 ◽  
Vol 881 (1) ◽  
pp. 012023
Author(s):  
Muslimsyah ◽  
A Munir ◽  
Y Away ◽  
Abdullah ◽  
K Huda ◽  
...  

Abstract Thermal comfort is one of the standard assessments of building thermal environment. Air movement is an important parameter for in a naturally ventilated to achieve thermal comfort by accelerating the evaporative cooling process on the human body. Aceh House has a standard of thermal comfort with a vernacular architecture with a natural ventilation system. This vernacular architectural building has a fairly high harmonization of the environment because it has undergone a process of adaptation. In this study, observations were made at the Original House (OH), the Adaptive Reuse House (ARH), and the Aceh Modified House (AMH). By using the method of assessing changes in environmental comfort, using Wet Bulb Temperature Index (WBGT) method, the minimum and maximum temperature ranges are 25°C and 30°C. In the WBGT thermal rating, AMH has the higher thermal and is followed by ARH and OH respectively. Thus, OH has lower thermal compared to other Aceh houses.


Author(s):  
Wisam A. M. Al-Shohani ◽  
Ahmed Qasim Ahmed ◽  
Ahmed Jawad Khaleel ◽  
Hassan J. Dakkama ◽  
Tareq Hamid Fayyad

Sign in / Sign up

Export Citation Format

Share Document