Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses

2021 ◽  
pp. 103108
Author(s):  
Katarina Cakyova ◽  
António Figueiredo ◽  
Rui Oliveira ◽  
Filipe Rebelo ◽  
Romeu Vicente ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7223
Author(s):  
Antonio J. Aguilar ◽  
María L. de la Hoz-Torres ◽  
Mª Dolores Martínez-Aires ◽  
Diego P. Ruiz

Since students and teachers spend much of their time in educational buildings, it is critical to provide good levels of indoor environmental quality (IEQ). The current COVID-19 pandemic has shown that maintaining a good indoor air quality level is an effective measure to control the transmission of the SARS-CoV-2 virus. This study used sensors to monitor key IEQ factors and assess several natural ventilation scenarios in a classroom of the University of Granada. Subsequently, the IEQ factors (temperature, relative humidity, CO2 concentration, acoustic environment, and air velocity) were evaluated for the selected ventilation scenarios in the occupied classroom, and the field monitoring was carried out in two different assessment periods, winter and summer. The obtained results show that the CO2 concentration levels were well below the recommended limits. However, the maintenance of the recommended thermal and acoustic IEQ factors was significantly affected by the natural ventilation strategies (temperature and relative humidity values were very close to the outside values, and the background sound pressure level was over 35 dBA during the entire assessment). The proper measurements and careful selection of the appropriate ventilation scenarios become of utmost importance to ensure that the ventilation rates required by the health authorities are achieved.


2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


2020 ◽  
Vol 65 (1) ◽  
pp. 5-11
Author(s):  
Anamaria Cenan ◽  
◽  
Daniela Mariana Ciorba ◽  
Keyword(s):  

2014 ◽  
Vol 13 (9) ◽  
pp. 2193-2200 ◽  
Author(s):  
Merike Fiedler ◽  
Chayan K. Saha ◽  
Christian Ammon ◽  
Werner Berg ◽  
Christiane Loebsin ◽  
...  

2019 ◽  
Vol 43 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Shahrzad Soudian ◽  
Umberto Berardi

This article investigates the possibility to enhance the use of latent heat thermal energy storage (LHTES) as an energy retrofit measure by night ventilation strategies. For this scope, phase change materials (PCMs) are integrated into wall and ceiling surfaces of high-rise residential buildings with highly glazed facades that experience high indoor diurnal temperatures. In particular, this article investigates the effect of night ventilation on the performance of the PCMs, namely, the daily discharge of the thermal energy stored by PCMs. Following previous experimental tests that have shown the efficacy of LHTES in temperate climates, a system comprising two PCM layers with melting temperatures selected for a year-around LHTES was considered. To quantify the effectiveness of different night ventilation strategies to enhance the potential of this composite PCM system, simulations in EnergyPlusTM were performed. The ventilation flow rate, set point temperature, and operation period were the main tested parameters. The performance of the PCMs in relation to the variables was evaluated based on indoor operative temperature and cooling energy use variations in Toronto and New York in the summer. The solidification of the PCMs was analyzed based on the amount of night ventilation needed in each climate condition. The results quantify the positive impact of combining PCMs with night ventilation on cooling energy reductions and operative temperature regulation of the following days. In particular, the results indicate higher benefits obtainable with PCMs coupled with night ventilation in the context of Toronto, since this city experiences higher daily temperature fluctuations. The impact of night ventilation design variables on the solidification rate of the PCMs varied based on each parameter leading to different compromises based on the PCM and climate characteristics.


Sign in / Sign up

Export Citation Format

Share Document