Optoelectrical and magnetic characteristics of Mn doped Zn1−xSnxO nanorods

2013 ◽  
Vol 74 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Tsung-Yin Hsu ◽  
Shang-Hung Lai ◽  
Hui-Huang Hsieh ◽  
Ming-Der Lan ◽  
Chih-Chuan Su ◽  
...  
2018 ◽  
Vol 20 (1) ◽  
pp. 553-561 ◽  
Author(s):  
Qinglong Fang ◽  
Xumei Zhao ◽  
Yuhong Huang ◽  
Kewei Xu ◽  
Tai Min ◽  
...  

Ferromagnetic (FM) two-dimensional (2D) transition metal dichalcogenides (TMDs) have potential applications in modern electronics and spintronics and doping of TMDs with transition metals can enhance the magnetic characteristics.


2006 ◽  
Vol 11 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Anh-Tuan Le ◽  
Chong-Oh Kim ◽  
Nguyen Chau ◽  
Nguyen Duc Tho ◽  
Nguyen Quang Hoa ◽  
...  

Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


2017 ◽  
Vol 39 (1) ◽  
pp. 46-52
Author(s):  
T. SAVCHENKO ◽  
◽  
A. GRECHANOVSKY ◽  
A. BRIK ◽  
N. DUDCHENKO

2019 ◽  
Vol 85 (1(I)) ◽  
pp. 35-44
Author(s):  
S. G. Sandomirski

The main magnetic parameters sensitive to the structure of steels are the parameters of their saturation loop of magnetic hysteresis: the coercive force Hcs and remanent magnetization Mrs. The saturation magnetization or saturation intensity Mr is most sensitive to the phase composition of steels. The variety of steel grades and modes of technological treatment (e.g., heat treatment, mechanical load) determined the use of magnetic structurescopy and magnetic characteristics — the coercive force Hc, remanent magnetization Mr , and specific hysteresis losses Wh on the subloops of the magnetic hysteresis of steels — as control parameters in diagnostics of the stressed and structural states of steel structures and pipelines. It has been shown that changes in Hc, Mr , and Wh are more sensitive to structural stresses and structures of steels than the parameters of the saturation hysteresis loop of magnetic hysteresis (Hcs, Mrs, and Mrs). The formulas for calculating Hc, Mr and Wh are presented to be used for estimation of changes in the parameters upon heat treatment of steels. Features of the structural sensitivity of the subloop characteristics and expediency of their use for magnetic structural and phase analyzes are determined. Thus, the range of changes in Ìr attributed to the structural changes in steels upon gradual Hm decrease is many times wider compared to the range of possible changes in Mrs under the same conditions. Conditions (relations between the magnetic parameters) and recommendations regarding the choice of the field strength Hm are given which provide the justified use of Hc, Mr and Wh parameters in magnetic structurescopy


Sign in / Sign up

Export Citation Format

Share Document