Machine learning for optimal selection of sparse triangular system solvers on GPUs

Author(s):  
Ernesto Dufrechou ◽  
Pablo Ezzatti ◽  
Manuel Freire ◽  
Enrique S. Quintana-Ortí
2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2012 ◽  
Vol 45 (4) ◽  
pp. 41 ◽  
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2012 ◽  
Vol 45 (4) ◽  
pp. 41
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2021 ◽  
Vol 13 (6) ◽  
pp. 3571
Author(s):  
Bogusz Wiśnicki ◽  
Dorota Dybkowska-Stefek ◽  
Justyna Relisko-Rybak ◽  
Łukasz Kolanda

The paper responds to research problems related to the implementation of large-scale investment projects in waterways in Europe. As part of design and construction works, it is necessary to indicate river ports that play a major role within the European transport network as intermodal nodes. This entails a number of challenges, the cardinal one being the optimal selection of port locations, taking into account the new transport, economic, and geopolitical situation that will be brought about by modernized waterways. The aim of the paper was to present an original methodology for determining port locations for modernized waterways based on non-cost criteria, as an extended multicriteria decision-making method (MCDM) and employing GIS (Geographic Information System)-based tools for spatial analysis. The methodology was designed to be applicable to the varying conditions of a river’s hydroengineering structures (free-flowing river, canalized river, and canals) and adjustable to the requirements posed by intermodal supply chains. The method was applied to study the Odra River Waterway, which allowed the formulation of recommendations regarding the application of the method in the case of different river sections at every stage of the research process.


2021 ◽  
pp. 0887302X2199594
Author(s):  
Ahyoung Han ◽  
Jihoon Kim ◽  
Jaehong Ahn

Fashion color trends are an essential marketing element that directly affect brand sales. Organizations such as Pantone have global authority over professional color standards by annually forecasting color palettes. However, the question remains whether fashion designers apply these colors in fashion shows that guide seasonal fashion trends. This study analyzed image data from fashion collections through machine learning to obtain measurable results by web-scraping catwalk images, separating body and clothing elements via machine learning, defining a selection of color chips using k-means algorithms, and analyzing the similarity between the Pantone color palette (16 colors) and the analysis color chips. The gap between the Pantone trends and the colors used in fashion collections were quantitatively analyzed and found to be significant. This study indicates the potential of machine learning within the fashion industry to guide production and suggests further research expand on other design variables.


2021 ◽  
Vol 23 (4) ◽  
pp. 2742-2752
Author(s):  
Tamar L. Greaves ◽  
Karin S. Schaffarczyk McHale ◽  
Raphael F. Burkart-Radke ◽  
Jason B. Harper ◽  
Tu C. Le

Machine learning models were developed for an organic reaction in ionic liquids and validated on a selection of ionic liquids.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 80
Author(s):  
John Fernando Martínez-Gil ◽  
Nicolas Alejandro Moyano-García ◽  
Oscar Danilo Montoya ◽  
Jorge Alexander Alarcon-Villamil

In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., Δ− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced power-flow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function.


Optik ◽  
2021 ◽  
Vol 231 ◽  
pp. 166417 ◽  
Author(s):  
Md Tohidul Islam ◽  
Md Rafsun Jani ◽  
Kazi Md Shorowordi ◽  
Zameer Hoque ◽  
Ali Mucteba Gokcek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document