The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress

2010 ◽  
Vol 167 (4) ◽  
pp. 261-269 ◽  
Author(s):  
MaŁgorzata Janicka-Russak ◽  
Katarzyna KabaŁa ◽  
Ewa MŁodzińska ◽  
Grażyna KŁobus
2013 ◽  
Vol 170 (10) ◽  
pp. 915-922 ◽  
Author(s):  
Małgorzata Janicka-Russak ◽  
Katarzyna Kabała ◽  
Anna Wdowikowska ◽  
Grażyna Kłobus

Author(s):  
Aline Costa Souza ◽  
Daniel Basílio Zandonadi ◽  
Mirella Pupo Santos ◽  
Natália Oliveira Aguiar Canellas ◽  
Cleiton de Paula Soares ◽  
...  

Abstract Background Salinity is one of the major environmental threats to agriculture, limiting plant growth and reducing crop yield. The use of humic substances to alleviate salt stress in plants is well reported, but the mechanisms remain unclear. This work aimed to apply humic acids on seedlings to acclimate plants to tolerate further salt stress exposition as a pre-treatment. Materials and methods Two independent experiments with mono (maize) and dicot (tomato) seedlings were carried out. Maize was primed by humic acids (4 mM C) and further submitted to moderate salinity exposition (60 mM NaCl). The acclimation period of maize seedlings was characterized by ion balance and transcriptomic analysis of salt response genes. The tomato seedlings were also primed by humic acids (4 mM C) and exposed further to salinity (200 mM NaCl), and we measured only physiological aspect, including the activity of plasma membrane proton pumps and net photosynthesis rate. Results Seedlings primed by humic acids minimized the salinity stress by changing ion balance, promoting plasma membrane proton pumps activity and enhancing photosynthesis rate and plant growth. We showed for the first time that maize seedlings treated with humic acids had a high transcription level of salt responsive genes and transcription factors even before the salt exposition. Conclusion Humic acids previously activate cellular and molecular salt defence machinery, anticipating the response and reducing salinity stress. This is a key knowledge to manipulate manufactured biostimulants based on humic substances towards a maximized crop protection. Graphic abstract


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 501-507
Author(s):  
Jeff C Young ◽  
Natalie D DeWitt ◽  
Michael R Sussman

Abstract Proton pumps (H+-ATPases) are the primary active transport systems in the plasma membrane of higher plant cells. These enzymes are encoded by a large gene family expressed throughout the plant, with specific isoforms directed to various specialized cells. While their involvement in membrane energetics has been suggested by a large body of biochemical and physiological studies, a genetic analysis of their role in plants has not yet been performed. We report here that mutant Arabidopsis thaliana plants containing a phloem-specific transgene encoding a plasma membrane H+-ATPase with an altered carboxy terminus show improved growth at low pH during seedling development. These observations provide the first genetic evidence for a role of the plasma membrane H+-ATPase in cytoplasmic pH homeostasis in plants.


1996 ◽  
Vol 148 (3-4) ◽  
pp. 425-433 ◽  
Author(s):  
Thomas Rausch ◽  
Matthias Kirsch ◽  
Rawer Löw ◽  
Angelika Lehr ◽  
Ruth Viereck ◽  
...  

2018 ◽  
Vol 45 (4) ◽  
pp. 428 ◽  
Author(s):  
Małgorzata Janicka ◽  
Małgorzata Reda ◽  
Katarzyna Czyżewska ◽  
Katarzyna Kabała

In the present study we demonstrate that the signalling molecules NO, H2O2 and H2S are important for understanding the mechanisms of modification of plasma membrane H+-ATPase (EC 3.6.3.14) activity in conditions of both salt (50 mM NaCl) and low temperature (10°C, LT) stress. Plants were subjected to stress conditions for 1 or 6 days. After 3 days of exposure to stress some of the plants were transferred to control conditions for another 3 days: post-stressed plants (3 + 3). We measured the endogenous levels of signalling molecules in stressed plants. To determine the physiological significance of NO, H2O2 and H2S induced activity of plasma membrane H+-ATPase (PM H+-ATPase) in salt and LT stresses, we investigated the activity of the plasma membrane proton pump in stress conditions, and plants were additionally supplemented with PTIO (a scavenger of NO), ascorbic acid (a scavenger of H2O2) or hypotaurine (a scavenger of H2S). H2S contributed to increased activity of PM H+-ATPase in short-term salt stress (1 day) and in low temperature treated plants (both 6 days and post-stressed plants), by stimulation of expression of several genes encoding isoforms of the plasma membrane proton pump (CsHA2, CsH4, CsH8, CsH9 and CsHA10). In contrast, NO and H2O2 play a minor role in the regulation of ATPase activity at the genetic level, because they significantly increased the expression of only one isoform, CsHA1, the expression level of which was very low in the tissues of the control plants, and additionally they slightly increased the expression of the gene encoding the isoform CsHA2. However, NO plays an important role in stimulation of the plasma membrane proton pumps under salt stress and low temperature. NO participates in post-translational modifications because it leads to increased enzyme phosphorylation and an increased H+/ATP coupling ratio.


2020 ◽  
Author(s):  
Weicong Qi ◽  
Jia Liu ◽  
Dayong Zhang ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
...  

Abstract Background: Salt tolerance is a key trait in soybean breeding and plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. In this study, we report the interactions of a set of aquaporins, soybean (Glycine max) plasma membrane-intrinsic proteins (GmPIPs), in response to salt stress. Results: GmPIP1;5 and GmPIP1;6 formed hetero-tetramers with GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. We detected interactions between GmPIP1;6 and GmPIP1;7, but not between GmPIP1;6 and GmPIP1;5. Furthermore, GmPIP2;9 formed homo-tetramers, and this interaction was strengthened under salt and osmotic stress. Expression analysis indicated complex and unique responses to salt stress depending on the duration of the stress. For example, GmPIP2;8, encoding one of the heteromer-forming PIP proteins, was highly up-regulated under early salt stress.Conclusions: Our study highlights the vital role of hetero- and homo-tetramers, in salt tolerance; and improves understanding of the mechanisms by which soybean aquaporin isoforms respond to abiotic stress.


2018 ◽  
Vol 19 (9) ◽  
pp. 2674 ◽  
Author(s):  
Derek Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress–strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector, with direction defined by Hechtian adhesion sites, has a magnitude of a few piconewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress-activated plasma membrane Ca2+ channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+, an AGP-Ca2+ capacitor directs the vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto, these components comprise the Hechtian oscillator and also the gravisensor. Thus, interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, the evolutionary origins of the Hechtian oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.


Author(s):  
Derek T Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia J. Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress-strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector with direction defined by Hechtian adhesion sites, has a magnitude of a few picoNewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress activated plasma membrane Ca2+channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+ an AGP-Ca2+ capacitor directs vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto these components comprise the Hechtian Oscillator and also the gravisensor. Thus interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, evolutionary origins of the Hechtian Oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.


2020 ◽  
Vol 117 (34) ◽  
pp. 20920-20925 ◽  
Author(s):  
Antonella Reyer ◽  
Melanie Häßler ◽  
Sönke Scherzer ◽  
Shouguang Huang ◽  
Jesper Torbøl Pedersen ◽  
...  

In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green algaChlamydomonas reinhardtiievolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. InArabidopsisplants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H+-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis inXenopusoocytes indicates that the capacity of this H+pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.


Sign in / Sign up

Export Citation Format

Share Document