scholarly journals Characterization of interactions between the soybean plasma membrane- intrinsic proteins GmPIP1s and GmPIP2s responding to salt stress

2020 ◽  
Author(s):  
Weicong Qi ◽  
Jia Liu ◽  
Dayong Zhang ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
...  

Abstract Background: Salt tolerance is a key trait in soybean breeding and plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. In this study, we report the interactions of a set of aquaporins, soybean (Glycine max) plasma membrane-intrinsic proteins (GmPIPs), in response to salt stress. Results: GmPIP1;5 and GmPIP1;6 formed hetero-tetramers with GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. We detected interactions between GmPIP1;6 and GmPIP1;7, but not between GmPIP1;6 and GmPIP1;5. Furthermore, GmPIP2;9 formed homo-tetramers, and this interaction was strengthened under salt and osmotic stress. Expression analysis indicated complex and unique responses to salt stress depending on the duration of the stress. For example, GmPIP2;8, encoding one of the heteromer-forming PIP proteins, was highly up-regulated under early salt stress.Conclusions: Our study highlights the vital role of hetero- and homo-tetramers, in salt tolerance; and improves understanding of the mechanisms by which soybean aquaporin isoforms respond to abiotic stress.

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 458
Author(s):  
Wanting Zhang ◽  
Jingxue Li ◽  
Junhui Dong ◽  
Yan Wang ◽  
Liang Xu ◽  
...  

Radish is a kind of moderately salt-sensitive vegetable. Salt stress seriously decreases the yield and quality of radish. The plasma membrane Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1) plays a crucial role in protecting plant cells against salt stress, but the biological function of the RsSOS1 gene in radish remains to be elucidated. In this study, the RsSOS1 gene was isolated from radish genotype ‘NAU-TR17’, and contains an open reading frame of 3414 bp encoding 1137 amino acids. Phylogenetic analysis showed that RsSOS1 had a high homology with BnSOS1, and clustered together with Arabidopsis plasma membrane Na+/H+ antiporter (AtNHX7). The result of subcellular localization indicated that the RsSOS1 was localized in the plasma membrane. Furthermore, RsSOS1 was strongly induced in roots of radish under 150 mmol/L NaCl treatment, and its expression level in salt-tolerant genotypes was significantly higher than that in salt-sensitive ones. In addition, overexpression of RsSOS1 in Arabidopsis could significantly improve the salt tolerance of transgenic plants. Meanwhile, the transformation of RsSOS1△999 could rescue Na+ efflux function of AXT3 yeast. In summary, the plasma membrane Na+/H+ antiporter RsSOS1 plays a vital role in regulating salt-tolerance of radish by controlling Na+ homeostasis. These results provided useful information for further functional characterization of RsSOS1 and facilitate clarifying the molecular mechanism underlying salt stress response in radish.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


1987 ◽  
Author(s):  
Gozal Ben-Hayyim ◽  
Frances DuPont ◽  
Robert Lundin ◽  
John Windle ◽  
William Hurkman

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200566 ◽  
Author(s):  
Chantal Ebel ◽  
Asma BenFeki ◽  
Moez Hanin ◽  
Roberto Solano ◽  
Andrea Chini

Author(s):  
Jose Ramón Acosta-Motos ◽  
Maria Fernanda Ortuño ◽  
Agustina Bernal-Vicente ◽  
Pedro Diaz-Vivancos ◽  
Maria Jesus Sanchez-Blanco ◽  
...  

This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 663 ◽  
Author(s):  
Jianhong Ren ◽  
Jun Ye ◽  
Lina Yin ◽  
Gouxia Li ◽  
Xiping Deng ◽  
...  

Melatonin has been confirmed extensively for the positive effects on increasing plant tolerance to various abiotic stresses. However, the roles of melatonin in mediating different stresses still need to be explored in different plants species and growth periods. To investigate the role of melatonin in mitigating salt stress, maize (Zea mays L.) seedlings growing in hydroponic solution were treated with 100 mM NaCl combined with or without 1 μM melatonin. Melatonin application had no effects on maize growth under normal condition, while it moderately alleviated the NaCl-induced inhibition of plant growth. The leaf area, biomass, and photosynthesis of melatonin-treated plants were higher than that of without melatonin under NaCl treatment. The osmotic potential was lower, and the osmolyte contents (including sucrose and fructose) were higher in melatonin-treated plants. Meanwhile, the decreases in Na+ content and increases in K+/Na+ ratio were found in shoots of melatonin-applied plant under salt stress. Moreover, both enzymatic and nonenzymatic antioxidant activities were significantly increased in leaves with melatonin application under salt treatment. These results clearly indicate that the exogenous melatonin-enhanced salt tolerance under short-term treatment could be ascribed to three aspects, including osmotic adjustment, ion balance, and alleviation of salt-induced oxidative stress.


2010 ◽  
Vol 167 (4) ◽  
pp. 261-269 ◽  
Author(s):  
MaŁgorzata Janicka-Russak ◽  
Katarzyna KabaŁa ◽  
Ewa MŁodzińska ◽  
Grażyna KŁobus

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2261
Author(s):  
Nidhi Gupta ◽  
Abhishek Kanojia ◽  
Arpana Katiyar ◽  
Yashwanti Mudgil

Salt stress is considered to be the most severe abiotic stress. High soil salinity leads to osmotic and ionic toxicity, resulting in reduced plant growth and crop production. The role of G-proteins during salt stresses is well established. AGB1, a G-protein subunit, not only plays an important role during regulation of Na+ fluxes in roots, but is also involved in the translocation of Na+ from roots to shoots. N-Myc Downregulated like 1 (NDL1) is an interacting partner of G protein βγ subunits and C-4 domain of RGS1 in Arabidopsis. Our recent in-planta expression analysis of NDL1 reported changes in patterns during salt stress. Based on these expression profiles, we have carried out functional characterization of the AGB1-NDL1 module during salinity stress. Using various available mutant and overexpression lines of NDL1 and AGB1, we found that NDL1 acts as a negative regulator during salt stress response at the seedling stage, an opposite response to that of AGB1. On the other hand, during the germination phase of the plant, this role is reversed, indicating developmental and tissue specific regulation. To elucidate the mechanism of the AGB1-NDL1 module, we investigated the possible role of the three NDL1 stress specific interactors, namely ANNAT1, SLT1, and IDH-V, using yeast as a model. The present study revealed that NDL1 acts as a modulator of salt stress response, wherein it can have both positive as well as negative functions during salinity stress. Our findings suggest that the NDL1 mediated stress response depends on its developmental stage-specific expression patterns as well as the differential presence and interaction of the stress-specific interactors.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2544
Author(s):  
Sami Hannachi ◽  
Stefaan Werbrouck ◽  
Insaf Bahrini ◽  
Abdelmuhsin Abdelgadir ◽  
Hira Affan Siddiqui

Previously, an efficient regeneration protocol was established and applied to regenerate plants from calli lines that could grow on eggplant leaf explants after a stepwise in vitro selection for tolerance to salt stress. Plants were regenerated from calli lines that could tolerate up to 120 mM NaCl. For further in vitro and in vivo evaluation, four plants with a higher number of leaves and longer roots were selected from the 32 plants tested in vitro. The aim of this study was to confirm the stability of salt tolerance in the progeny of these four mutants (‘R18’, ‘R19’, ‘R23’ and ‘R30’). After three years of in vivo culture, we evaluated the impact of NaCl stress on agronomic, physiological and biochemical parameters compared to the parental control (‘P’). The regenerated and control plants were assessed under in vitro and in vivo conditions and were subjected to 0, 40, 80 and 160 mM of NaCl. Our results show significant variation in salinity tolerance among regenerated and control plants, indicating the superiority of four regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) when compared to the parental line (‘P’). In vitro germination kinetics and young seedling growth divided the lines into a sensitive and a tolerant group. ‘P’ tolerate only moderate salt stress, up to 40 mM NaCl, while the tolerance level of ‘R18’, ‘R19’, ‘R23’ and ‘R30’ was up to 80 mM NaCl. The quantum yield of PSII (ΦPSII) declined significantly in ‘P’ under salt stress. The photochemical quenching was reduced while nonphotochemical quenching rose in ‘P’ under salt stress. Interestingly, the regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) exhibited high apparent salt tolerance by maintaining quite stable Chl fluorescence parameters. Rising NaCl concentration led to a substantial increase in foliar proline, malondialdehyde and soluble carbohydrates accumulation in ‘P’. On the contrary, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ exhibited a decline in soluble carbohydrates and a significant enhancement in starch under salinity conditions. The water status reflected by midday leaf water potential (ψl) and leaf osmotic potential (ψπ) was significantly affected in ‘P’ and was maintained a stable level in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ under salt stress. The increase in foliar Na+ and Cl− content was more accentuated in parental plants than in regenerated plants. The leaf K+, Ca2+ and Mg2+ content reduction was more aggravated under salt stress in ‘P’. Under increased salt concentration, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ associate lower foliar Na+ content with a higher plant tolerance index (PTI), thus maintaining a normal growth, while foliar Na+ accumulation was more pronounced in ‘P’, revealing their failure in maintaining normal growth under salinity stress. ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an obvious salt tolerance by maintaining significantly high chlorophyll content. In ‘R18’, ‘R19’, ‘R23’ and ‘R30’, the enzyme scavenging machinery was more performant in the roots compared to the leaves. Salt stress led to a significant augmentation of catalase, ascorbate peroxidase and guaiacol peroxidase activities in the roots of ‘R18’, ‘R19’, ‘R23’ and ‘R30’. In contrast, enzyme activities were less enhanced in ‘P’, indicating lower efficiency to cope with oxidative stress than in ‘R18’, ‘R19’, ‘R23’ and ‘R30’. ACC deaminase activity was significantly higher in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ than in ‘P’. The present study suggests that regenerated plants ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an evident stability in tolerating salinity, which shows their potential to be adopted as interesting selected mutants, providing the desired salt tolerance trait in eggplant.


Sign in / Sign up

Export Citation Format

Share Document