The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis

2016 ◽  
Vol 193 ◽  
pp. 12-21 ◽  
Author(s):  
Ikram Zaidi ◽  
Chantal Ebel ◽  
Nibras Belgaroui ◽  
Mouna Ghorbel ◽  
Imène Amara ◽  
...  
Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhichen Cai ◽  
Xunhong Liu ◽  
Huan Chen ◽  
Rong Yang ◽  
Jiajia Chen ◽  
...  

AbstractLonicerae Japonicae Flos (LJF) is an important traditional Chinese medicine for the treatment of various ailments and plays a vital role in improving global human health. However, as unable to escape from adversity, the quality of sessile organisms is dramatically affected by salt stress. To systematically explore the quality formation of LJF in morphology, physiology, and bioactive constituents' response to multiple levels of salt stress, UFLC-QTRAP-MS/MS and multivariate statistical analysis were performed. Lonicera japonica Thunb. was planted in pots and placed in the field, then harvested after 35 days under salt stress. Indexes of growth, photosynthetic pigments, osmolytes, lipid peroxidation, and antioxidant enzymes were identified to evaluate the salt tolerance in LJF under different salt stresses (0, 100, 200, and 300 mM NaCl). Then, the total accumulation and dynamic variation of 47 bioactive constituents were quantitated. Finally, Partial least squares discrimination analysis and gray relational analysis were performed to systematically cluster, distinguish, and evaluate the samples, respectively. The results showed that 100 mM NaCl induced growth, photosynthetic, antioxidant activities, osmolytes, lipid peroxidation, and multiple bioactive constituents in LJF, which possessed the best quality. Additionally, a positive correlation was found between the accumulation of phenolic acids with antioxidant enzyme activity under salt stress, further confirming that phenolic acids could reduce oxidative damage. This study provides insight into the quality formation and valuable information to improve the LJF medicinal value under salt stress.


2001 ◽  
Vol 276 (36) ◽  
pp. 33319-33327 ◽  
Author(s):  
Stephan Ryser ◽  
Silvia Tortola ◽  
Goedele van Haasteren ◽  
Marco Muda ◽  
Senlin Li ◽  
...  

2013 ◽  
Vol 33 (6) ◽  
pp. 2313-2325 ◽  
Author(s):  
D. M. Taylor ◽  
R. Moser ◽  
E. Regulier ◽  
L. Breuillaud ◽  
M. Dixon ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


Sign in / Sign up

Export Citation Format

Share Document