scholarly journals Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


2020 ◽  
Vol 44 ◽  
Author(s):  
Hussein Abdullah Ahmed Ahmed ◽  
Nilüfer Koçak Şahin ◽  
Güray Akdoğan ◽  
Cennet Yaman ◽  
Deniz Köm ◽  
...  

ABSTRACT Salinity is one of the abiotic stresses that lead to an imbalance in the physiological processes of the plants and also affects potato growth and productivity in maınly semi-arid and growing areas. The accumulation of Na+ and Cl- ions in the cells is very toxic can influence all mechanisms and the enzymatic actions of the plants. In vitro screening of plant genotypes for osmotic stress represents a valuable tool as an alternative to field trials and can be applied based on osmotic stress tolerance. The main goal of this study was to reveal variability in salinity stress tolerance of potato varieties using in vitro screening. Stem cuttings consisting of a single node of different varieties were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of sodium chloride (NaCl) (0, 50, 100 and 150 mM). The differences among the plantlet length, number of branches, number of nodes, number of the leaflet, leaflet width, leaflet length, root length, number of the root, fresh plantlet weight, dry plantlet weight of all varieties were negatively influenced by all NaCl concentrations tested. Microtuberization and stolon growth of the varieties were also completely inhibited at high concentrations (100-150 mM). The Principal components analysis (PCA) was applied to the data matrix (15 morphological characteristics x 12 potato varieties) of the potato varieties. Also, a hierarchical cluster analysis (HCA) was used to identify the possible nearest and similarity of all morphological characteristics analyzed of the potato varieties. In grouping potato varieties, HCA and PCA results were found to be similar. We can speculate about the responses of morphological similarities of the potato varieties against salt stress. We concluded that Innovator and Kennebec are respectively the most salt-tolerant varieties. Hermes was moderately salt-tolerant and microtuberization capacity of Slaney was also high under salt stress conditions.


1970 ◽  
Vol 40 (1) ◽  
pp. 67-73 ◽  
Author(s):  
E Shahbazi ◽  
A Arzani ◽  
G Saeidi

Effects of salt stress on germination, seedling growth and activity of antioxidant enzymes in leaves of six cultivars of canola (Brassica napus L.) were investigated on two F1 hybrids (Hyola401, Hyola330) and four open pollinated cultivars (Zarfam, Okapi, RGs003 and Sarigol). Seeds were germinated under various levels of salinity (0, 50, 100, 150 and 200 mM NaCl solutions). An increase in NaCl concentrations progressively inhibited seed germination. Hyola401 showed the highest germination percentage at all salinity levels. Seedling growth parameters were affected by salt stress particularly at 150 and 200 mM. Leaf antioxidant activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) were increased by salinity increase up to 150 mM while decreased at 200 mM NaCl concentration. Although constitutive levels of activity of antioxidative enzymes were almost the same among the canola cultivars, Hyola401 induced antioxidant enzyme activities were more efficient when subjected to NaCl treatment. Among the tested cultivars, F1 hybrid ‘Hyola401’ could be considered as salt tolerant as possessing higher germination percentage, better seedling growth and antioxidant activities under salinity stress. On the other hand, F1 hybrid ‘Hyola330’ performed inferior to said aspects and was the most susceptible cultivar to salinity stress. Key words: Canola; Brassica napus; Salinity; Antioxidant enzyme; NaCl; Germination DOI: http://dx.doi.org/10.3329/bjb.v40i1.8000 Bangladesh J. Bot. 40(1): 67-73, 2011 (June)


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Uttam Bhowmik ◽  
Mohammad Golam Kibria ◽  
Mohammad Saidur Rhaman ◽  
Yoshiyuki Murata ◽  
Md. Anamul Hoque

Crop production is unexpectedly hampered by different abiotic stresses. Salinity is one of the leading stresses, which snappishly hampers plant developmental progression. Local rice landraces exhibit noticeable salt tolerance as well as high yield. However, research is scarce about the physio-biochemical responses of local landraces and modern cultivar under saline conditions. Therefore, the present experiment was designed to reveal the physio-biochemical responses of local landraces and modern cultivar under salinity stress. Five landraces (Jotai, Icheburogolghor, Morishal, Chapail, Kumro buro) and two modern cultivars (BR23 and BRRI dhan41) were subjected to 0, 20, 40, 60 and 80 mM NaCl treatment. The effects of salt stress on morphological parameters, proline contents, and activities of antioxidant enzymes were assessed. Salt stress reduces the morphological parameters of all tested cultivars. The Morishal and BRRI dhan41 exhibited higher growth of plant and physiological parameters than other cultivars under the highest salinity. The catalase (CAT) and ascorbate peroxidase (APX), exhibited a significant increase whereas peroxidase (POX) activity significantly declined in all the cultivars under salinity stress. Morishal and BRRI dhan41 showed the highest proline content under the maximum saline condition. These results suggest that the high tolerant landrace and modern cultivars were Morishal and BRRI dhan41 respectively. These results also suggest that Morishal and BRRI dhan41 exhibited high tolerance to salinity by enhancing proline content and antioxidant enzyme activities.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2299
Author(s):  
Hiba M. Alkharabsheh ◽  
Mahmoud F. Seleiman ◽  
Omar A. Hewedy ◽  
Martin L. Battaglia ◽  
Rewaa S. Jalal ◽  
...  

The productivity of cereal crops under salt stress limits sustainable food production and food security. Barley followed by sorghum better adapts to salinity stress, while wheat and maize are moderately adapted. However, rice is a salt-sensitive crop, and its growth and grain yield are significantly impacted by salinity stress. High soil salinity can reduce water uptake, create osmotic stress in plants and, consequently, oxidative stress. Crops have evolved different tolerance mechanisms, particularly cereals, to mitigate the stressful conditions, i.e., effluxing excessive sodium (Na+) or compartmentalizing Na+ to vacuoles. Likewise, plants activate an antioxidant defense system to detoxify apoplastic cell wall acidification and reactive oxygen species (ROS). Understanding the response of field crops to salinity stress, including their resistance mechanisms, can help breed adapted varieties with high productivity under unfavourable environmental factors. In contrast, the primary stages of seed germination are more critical to osmotic stress than the vegetative stages. However, salinity stress at the reproductive stage can also decrease crop productivity. Biotechnology approaches are being used to accelerate the development of salt-adapted crops. In addition, hormones and osmolytes application can mitigate the toxicity impact of salts in cereal crops. Therefore, we review the salinity on cereal crops physiology and production, the management strategies to cope with the harmful negative effect on cereal crops physiology and production of salt stress.


2012 ◽  
Vol 137 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Longxing Hu ◽  
Tao Hu ◽  
Xunzhong Zhang ◽  
Huancheng Pang ◽  
Jinmin Fu

Salinity stress may involve the accumulation of glycine betaine (GB). The objective of this study was to examine whether exogenous GB would ameliorate the detrimental effect of salinity stress on perennial ryegrass (Lolium perenne). The grass was subjected to two salinity levels (0 and 250 mm NaCl) and three GB levels (0, 20, and 50 mm). Salinity resulted in a remarkable decrease in vertical shoot growth rate (VSGR), shoot and root fresh weight, relative water content (RWC), relative transpiration rate (Tr), and chlorophyll (Chl) content, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities. Plants subjected to salt exhibited an increase in leaf electrolyte leakage (EL), lipid peroxidation (MDA), and proline content. Application of GB reduced EL, MDA, and proline content in salt-stressed plants. Perennial ryegrass subjected to salt stress plus GB had a greater level of VSGR, RWC, relative Tr, Chl content, and activities of SOD, CAT, and APX when compared with salt-stressed without GB. Salt stress increased Na+ and decreased K+ content, which resulted in a higher Na+/K+ ratio in perennial ryegrass. Application of 20 mm GB suppressed Na+ accumulation, whereas the K+ content was significantly increased in shoot, which led to a higher K+/Na+ ratio under saline conditions. These results suggested that GB-enhanced salt tolerance in perennial ryegrass was mainly related to the elevated SOD, CAT, and APX activity and alleviation of cell membrane damage by reducing oxidation of membrane lipid and improving the ion homeostasis under salt stress.


2021 ◽  
Vol 22 (24) ◽  
pp. 13249
Author(s):  
Himani Punia ◽  
Jayanti Tokas ◽  
Anurag Malik ◽  
Andrzej Bajguz ◽  
Mohamed A. El-Sheikh ◽  
...  

Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2463
Author(s):  
Himani Punia ◽  
Jayanti Tokas ◽  
Virender Singh Mor ◽  
Axay Bhuker ◽  
Anurag Malik ◽  
...  

Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≤ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl−, and SO42− increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2076
Author(s):  
Anisa Aslam ◽  
Shahbaz Khan ◽  
Danish Ibrar ◽  
Sohail Irshad ◽  
Ali Bakhsh ◽  
...  

Salt stress is recognized to negatively influence the fundamental processes in plants regarding growth and yield. The sunflower (Helianthus annuus L.) is considered an important industrial crop because of the good quality of oil it produces that can be used for cooking purposes. The exogenous application of potassium (K) has been reported to enhance abiotic resistance and increase yield in crops. Here, we explored the impact of foliar-applied K at 500 ppm on the physiological and biochemical traits, antioxidant activities, and growth attributes of sunflower grown under salt stress (140 mM NaCl). The findings indicated that salinity stress adversely affected photosynthesis and various gas exchange characteristics. Foliar applied K markedly improved the stomatal conductance, transpiration rate, water use efficiency, CO2 assimilation rate, total soluble proteins, chlorophyll pigments, and upregulated antioxidant system, which are responsible for the healthy growth of sunflower hybrids grown under salinity stress. The shoot and root lengths, plant fresh and dry weights, and achene weight were significantly increased by K application. Overall, foliar applied K significantly improved all of the aforementioned attributes and can attenuate the deleterious influences of salinity stress in sunflower.


Sign in / Sign up

Export Citation Format

Share Document