A hybrid approach using machine learning and genetic algorithm to inverse modeling for single sphere scattering in a Gaussian light sheet

Author(s):  
Zhaolou Cao ◽  
Fenping Cui ◽  
Fenglin Xian ◽  
Chunjie Zhai ◽  
Shixin Pei
Author(s):  
Abdiya Alaoui ◽  
Zakaria Elberrichi

The development of powerful learning strategies in the medical domain constitutes a real challenge. Machine learning algorithms are used to extract high-level knowledge from medical datasets. Rule-based machine learning algorithms are easily interpreted by humans. To build a robust rule-based algorithm, a new hybrid metaheuristic was proposed for the classification of medical datasets. The hybrid approach uses neural communication and genetic algorithm-based inductive learning to build a robust model for disease prediction. The resulting classification models are characterized by good predictive accuracy and relatively small size. The results on 16 well-known medical datasets from the UCI machine learning repository shows the efficiency of the proposed approach compared to other states-of-the-art approaches.


Author(s):  
Kayla Zeliff ◽  
Walter Bennette ◽  
Scott Ferguson

Previous work tested a multi-objective genetic algorithm that was integrated with a machine learning classifier to reduce the number of objective function calls. Four machine learning classifiers and a baseline “No Classifier” option were evaluated. Using a machine learning classifier to create a hybrid multiobjective genetic algorithm reduced objective function calls by 75–85% depending on the classifier used. This work expands the analysis of algorithm performance by considering six standard benchmark problems from the literature. The problems are designed to test the ability of the algorithm to identify the Pareto frontier and maintain population diversity. Results indicate a tradeoff between the objectives of Pareto frontier identification and solution diversity. The “No Classifier” baseline multiobjective genetic algorithm produces the frontier with the closest proximity to the true frontier while a classifier option provides the greatest diversity when the number of generations is fixed. However, there is a significant reduction in computational expense as the number of objective function calls required is significantly reduced, highlighting the advantage of this hybrid approach.


Author(s):  
Pooja Rani ◽  
Rajneesh Kumar ◽  
Anurag Jain ◽  
Sunil Kumar Chawla

Machine learning has become an integral part of our life in today's world. Machine learning when applied to real-world applications suffers from the problem of high dimensional data. Data can have unnecessary and redundant features. These unnecessary features affect the performance of classification systems used in prediction. Selection of important features is the first step in developing any decision support system. In this paper, the authors have proposed a hybrid feature selection method GARFE by integrating GA (genetic algorithm) and RFE (recursive feature elimination) algorithms. Efficiency of proposed method is analyzed using support vector machine classifier on the scale of accuracy, sensitivity, specificity, precision, F-measure, and execution time parameters. Proposed GARFE method is also compared to eight other feature selection methods. Results demonstrate that the proposed GARFE method has increased the performance of classification systems by removing irrelevant and redundant features.


2020 ◽  
Vol 13 (2) ◽  
pp. 141-154
Author(s):  
Abdiya Alaoui ◽  
Zakaria Elberrichi

The development of powerful learning strategies in the medical domain constitutes a real challenge. Machine learning algorithms are used to extract high-level knowledge from medical datasets. Rule-based machine learning algorithms are easily interpreted by humans. To build a robust rule-based algorithm, a new hybrid metaheuristic was proposed for the classification of medical datasets. The hybrid approach uses neural communication and genetic algorithm-based inductive learning to build a robust model for disease prediction. The resulting classification models are characterized by good predictive accuracy and relatively small size. The results on 16 well-known medical datasets from the UCI machine learning repository shows the efficiency of the proposed approach compared to other states-of-the-art approaches.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

In today's world, machine learning has become a vital part of our lives. When applied to real-world applications, machine learning encounters the difficulty of high dimensional data. Unnecessary and redundant features can be found in data. The performance of classification algorithms employed in prediction is harmed by these superfluous features. The primary step in developing any decision support system is to identify critical features. In this paper, authors have proposed a hybrid feature selection method CFGA by integrating CFS (Correlation feature selection) and GA (genetic algorithm). The efficiency of proposed method is analyzed using Logistic Regression classifier on the scale of accuracy, sensitivity, specificity, precision, F-measure and execution time parameters. Proposed CFGA method is also compared to six other feature selection methods. Results demonstrate that proposed method have increased the performance of the classification system by removing irrelevant and redundant features.


2021 ◽  
Author(s):  
Shusei Tanaka ◽  
Matthieu Rousset ◽  
Yousef Ghomian ◽  
Aizada Azhigaliyeva ◽  
Chingiz Bopiyev ◽  
...  

Abstract Sour gas injection operation has been implemented in Tengiz since 2008 and will be expanded as part of a future growth project. Due to limited gas handling capacity, producing wells at high GOR has been a challenge, resulting in potential well shutdowns. The objective of this study was to establish an efficient optimization workflow to improve vertical/areal sweep, thereby maximizing recovery under operation constraints. This will be enabled through conformance control completions that have been installed in many production/injection wells. A Dual-Porosity and Dual-Permeability (DPDK) compositional simulation model with advanced Field Management (FM) logic was used to perform the study. Vertical conformance control was implemented in the model enabling completion control of 4 compartments per well. A model-based optimization workflow was defined to maximize recovery. Objective functions considered were incremental recovery 1) after 5 years, and 2) at the end of concession. Control parameters considered for optimization are 1) injection allocation rate, 2) production allocation rate, 3) vertical completion compartments for injectors and producers. A combination of different optimization techniques e.g., Genetic Algorithm and Machine-Learning sampling method were utilized in an iterative manner. It was quickly realized that due to the number of mixed categorical and continuous control parameters and non-linearity in simulation response, the optimization problem became almost infeasible. In addition, the problem also became more complex with multiple time-varying operational constraints. Parameterization of the control variables, such as schedule and/or FM rules optimization were revisited. One observation from this study was that a hybrid approach of considering schedule-based optimization was the best way to maximize short term objectives while rule-based FM optimization was the best alternative for long term objective function improvement. This hybrid approach helped to improve practicality of applying optimization results into field operational guidelines. Several optimization techniques were tested for the study using both conceptual and full-field Tengiz models, realizing the utility of some techniques that could help in many field control parameters. However, all these optimization techniques required more than 2000 simulation runs to achieve optimal results, which was not practical for the study due to constraints in computational timing. It was observed that limiting control parameters to around 50 helped to achieve optimal results for the objective functions by conducting 500 simulation runs. These limited number of parameters were selected from flow diagnostics and heavy-hitter analyses from the pool of original 800+ control parameters. The novelty of this study includes three folds: 1) The model-based optimization outcome obtained in this study has been implemented in the field operations with observation of increased recovery 2) the hybrid optimization of both schedule and operation rule provided practicality in terms of optimization performance as well as application to the field operation 3) provides lessons learned from the application of optimization techniques ranging from conventional Genetic Algorithm to Machine-Learning supported technique.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


2010 ◽  
Vol 14 (2) ◽  
pp. 159-181
Author(s):  
MUNPYO HONG ◽  
MIYOUNG SHIN ◽  
Shinhye Park ◽  
Hyungmin Lee

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


Sign in / Sign up

Export Citation Format

Share Document