Periodontal pathogen Polyphylomonas gingivalis suppress trophoblastic invasion and embryoid formation through multiple mechanisms

2017 ◽  
Vol 124 ◽  
pp. 74
Author(s):  
Naoko Hirohata ◽  
Shihoko Komine-Aizawa ◽  
Satoshi Hayakawa
2021 ◽  
Vol 27 (2) ◽  
pp. 158-169
Author(s):  
Mikael Kyrklund ◽  
Heidi Kaski ◽  
Ramin Akhi ◽  
Antti E Nissinen ◽  
Outi Kummu ◽  
...  

Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 268
Author(s):  
Wei-Kuang Lai ◽  
Ying-Chen Lu ◽  
Chun-Ren Hsieh ◽  
Chien-Kei Wei ◽  
Yi-Hong Tsai ◽  
...  

Lactic acid bacteria have functions in immunoregulation, antagonism, and pathogen inhibition. The purpose of this study was to evaluate the effectiveness of lactic acid bacteria (LAB) in countering oral pathogens and develop related products. After a series of assays to 450 LAB strains, 8 heat-inactivated strains showed a strong inhibitory effect on a caries pathogen, Streptococcus mutans, and 308 heat-inactivated LAB strains showed a strong inhibitory effect on a periodontal pathogen, Porphyromonas gingivalis. The key reasons for inhibiting oral pathogens were bacteriocins produced by LAB and the coaggregation effect of the inactivated cells. We selected Lacticaseibacillus (Lb) paracasei 111 and Lb.paracasei 141, which had the strongest inhibitory effects on the above pathogens, was the main oral health food source. The optimal cultural conditions of Lb. paracasei 111 and Lb. paracasei 141 were studied. An oral tablet with a shelf life of 446 days made of the above strains was developed. A 40 volunteers’ clinical study (CSMUH IRB number: CS05065) was conducted with this tablet in the Periodontological Department of the Stomatology Research Center, Affiliated Hospital of Chung Shan Medical University (Taiwan). After 8 weeks of testing, 95% and 78.9% of patients showed an effect on reducing periodontal pathogens and improving probing pocket depth, respectively, in the oral tablet group.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 309
Author(s):  
Pachiappan Arjunan ◽  
Radhika Swaminathan ◽  
Jessie Yuan ◽  
Mohamed Elashiry ◽  
Amany Tawfik ◽  
...  

Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.


2017 ◽  
Vol 52 (6) ◽  
pp. e12474 ◽  
Author(s):  
V. Ilievski ◽  
U. G. Bhat ◽  
S. Suleiman-Ata ◽  
B. A. Bauer ◽  
P. T. Toth ◽  
...  

2013 ◽  
Vol 36 (9) ◽  
pp. 829-833 ◽  
Author(s):  
Yohsuke Hanaoka ◽  
Hirofumi Soejima ◽  
Osamu Yasuda ◽  
Hideki Nakayama ◽  
Masashi Nagata ◽  
...  

2021 ◽  
pp. 088391152199279
Author(s):  
Ningtao Wang ◽  
Zhengmei Huang ◽  
Shenchun Wang ◽  
Meidong Lang ◽  
Xiuyin Zhang

This study was aimed at alleviating shortcomings in the treatment of periodontitis by preparation of a biopolymer membrane loaded with minocycline hydrochloride (MH) inserted into periodontal pockets to treat infections. Monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone-co-L-lactide) (mPEG-PCLA) is a biocompatible and biodegradable amphiphilic block copolymer. It, therefore, has attracted considerable attention in drug delivery systems and periodontal treatment. We chose it as a membrane material for MH-drug loading. The MH-loaded membranes were prepared by the solvent casting technique with the content of 5, 8 and 10 wt.%, respectively. Fourier transform infrared spectra (FTIR) revealed no interaction between MH and polymer. The drug-loaded membrane surface morphology was investigated by scanning electron microscopy (SEM). In vitro release studies showed that the initial drug release exceeded 40% within 24 h, followed by a sustained release for up to 2 weeks, which would enable the therapeutic level to maintain over a longer time. The antibacterial activity studies in vitro demonstrated a positive effect on the periodontal pathogen. MH drug-loaded membranes have no adverse effect on the growth of periodontal ligament fibroblasts in the MTT test. The study suggests that mPEG-PCLA membranes containing MH are a potential antibacterial drug delivery system for local treatment of periodontitis.


2002 ◽  
Vol 70 (10) ◽  
pp. 5695-5705 ◽  
Author(s):  
Peter L. W. Yun ◽  
Arthur A. DeCarlo ◽  
Charles Collyer ◽  
Neil Hunter

ABSTRACT Interleukin 12 (IL-12) is an efficient inducer and enhancer of gamma interferon (IFN-γ) production by both resting and activated T cells. There is evidence that human monocytes exposed to IFN-γ have enhanced ability to produce IL-12 when stimulated with lipopolysaccharide (LPS). In this study, it was demonstrated that LPS from the oral periodontal pathogen Porphyromonas gingivalis stimulated monocytes primed with IFN-γ to release IL-12, thereby enhancing IFN-γ accumulation in T-cell populations. P. gingivalis LPS was shown to enhance IL-12 induction of IFN-γ in T cells in a manner independent from TNF-α contribution. The levels of T-cell IL-12 receptors were not affected by P. gingivalis LPS and played only a minor role in the magnitude of the IFN-γ response. These data suggest that LPS from P. gingivalis establishes an activation loop with IL-12 and IFN-γ with potential to augment the production of inflammatory cytokines in relation to the immunopathology of periodontitis. We previously reported that the major cysteine proteinases (gingipains) copurifying with LPS in this organism were responsible for reduced IFN-γ accumulation in the presence of IL-12. However, the addition of the gingipains in the presence of LPS resulted in partial restoration of the IFN-γ levels. In the destructive periodontitis lesion, release of gingipains from the outer membrane (OM) of P. gingivalis could lead to the downregulation of Th1 responses, while gingipain associated with LPS in the OM or in OM vesicles released from the organism could have net stimulatory effects.


Sign in / Sign up

Export Citation Format

Share Document