scholarly journals Evaluation of Performance of Animal Bone Meal as a new low cost adsorbent for the removal of a cationic dye Rhodamine B from aqueous solutions

2016 ◽  
Vol 20 ◽  
pp. S53-S59 ◽  
Author(s):  
Mohammadine El Haddad ◽  
Rachid Mamouni ◽  
Nabil Saffaj ◽  
Saïd Lazar
2021 ◽  
Vol 35 (1) ◽  
pp. 43-56
Author(s):  
Rachid Slimani ◽  
Hasnaa Hiyane ◽  
Mohammadine El Haddad ◽  
Said Lazar ◽  
Said El Antri ◽  
...  

This research investigates the removal of textile dyes (Rhodamine B and Alizarin Red S) from aqueous solution by a low-cost adsorbent prepared from eggshell waste. Batch adsorption experiments were conducted in order to determine the effect of different parameters such as pH, dye concentration, contact time, adsorbent dosage, particle <br /> size, and temperature. The best correlation was found by Langmuir model, and the maximum adsorption capacity was 175.58 mg g–1 for Rhodamine B and 156.56 mg g–1 for Alizarin Red S. Thermodynamic studies showed that the adsorption of Rhodamine B and Alizarin Red S were feasible, spontaneous, and exothermic in nature. Regeneration study conducted to test the reusability (five cycles) and comparison of adsorption capacities of Rhodamine B and Alizarin Red S showed that calcined eggshell adsorbent could potentially be used for the removal of dyes from aqueous solutions.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ &gt; Cd2+ &gt; Zn2+ &gt; Cu2+ &gt; Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ &gt; Cu2+ &gt; Zn2+ &gt; Cd2+ &gt; Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2019 ◽  
Vol 146 ◽  
pp. 1043-1053 ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Mohammad Sarmadi ◽  
Mohammad Reza Alipour ◽  
Daryoush Sanaei ◽  
Hamid Abdolmaleki ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1312
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The contamination of surface and groundwater with phosphate originating from industrial and household wastewater remains a serious environmental issue in low-income countries. Herein, phosphate removal from aqueous solutions was studied using low-cost volcanic rocks such as pumice (VPum) and scoria (VSco), obtained from the Ethiopian Great Rift Valley. Batch adsorption experiments were conducted using phosphate solutions with concentrations of 0.5 to 25 mg·L−1 to examine the adsorption kinetic as well as equilibrium conditions. The experimental adsorption data were tested by employing various equilibrium adsorption models, and the Freundlich and Dubinin-Radushkevich (D-R) isotherms best depicted the observations. The maximum phosphate adsorption capacities of VPum and VSco were calculated and found to be 294 mg·kg−1 and 169 mg·kg−1, respectively. A pseudo-second-order kinetic model best described the experimental data with a coefficient of correlation of R2 > 0.99 for both VPum and VSco; however, VPum showed a slightly better selectivity for phosphate removal than VSco. The presence of competitive anions markedly reduced the removal efficiency of phosphate from the aqueous solution. The adsorptive removal of phosphate was affected by competitive anions in the order: HCO3− >F− > SO4−2 > NO3− > Cl− for VPum and HCO3− > F− > Cl− > SO4−2 > NO3− for VSco. The results indicate that the readily available volcanic rocks have a good adsorptive capacity for phosphate and shall be considered in future studies as test materials for phosphate removal from water in technical-scale experiments.


The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 5184-5189 ◽  
Author(s):  
Rudy J. Wojtecki ◽  
Alexander Y. Yuen ◽  
Thomas G. Zimmerman ◽  
Gavin O. Jones ◽  
Hans W. Horn ◽  
...  

The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using hexahydrotriazines as a chemical indicator and a low cost fluorimeter-based detection system.


Sign in / Sign up

Export Citation Format

Share Document