1H-NMR Based Metabolomics Study of the Intestinal Epithelial Cell (IEC-6) Under the Oxidative Stress

2010 ◽  
Vol 158 (2) ◽  
pp. 256 ◽  
Author(s):  
K. Nakata ◽  
N. Sato ◽  
T. Asakura ◽  
K. Hirakawa ◽  
R. Zhu ◽  
...  
Metabolites ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Runxian Li ◽  
Yang Wen ◽  
Gang Lin ◽  
Chengzhen Meng ◽  
Pingli He ◽  
...  

Copper (Cu) is widely used in the swine industry to improve the growth performance of pigs. However, high doses of copper will induce cell damage and toxicity. The aim of this study was to evaluate toxicity, bioavailability, and effects on metabolic processes of varying copper sources using porcine intestinal epithelial cells (IPEC-J2) as a model. The IPEC-J2 were treated with two doses (30 and 120 μM) of CuSO4, Cu Glycine (Cu-Gly), and Cu proteinate (Cu-Pro) for 10 h, respectively. Cell damage and cellular copper metabolism were measured by the changes in cell viability, copper uptake, oxidative stress biomarkers, and gene/protein expression levels. The results showed that cell viability and ratio of reduced and oxidized glutathione (GSH/GSSG) decreased significantly in all treatment groups; intracellular copper content increased significantly in all treatment groups; total superoxide dismutase (SOD) activity increased significantly in the 120 μM exposed groups; SOD1 protein expression levels were significantly upregulated in 30 μM Cu-Pro, 120 μM Cu-Gly, and 120 μM Cu-Pro treatment groups; intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) content increased significantly in 30 μM treatment groups and 120 μM CuSO4 treatment group. CTR1 and ATP7A gene expression were significantly downregulated in the 120 μM exposed groups. While upregulation of ATOX1 expression was observed in the presence of 120 μM Cu-Gly and Cu-Pro. ASCT2 gene expression was significantly upregulated after 120 μM Cu-Glycine and CuSO4 exposure, and PepT1 gene expression was significantly upregulated after Cu-Pro exposure. In addition, CTR1 protein expression level decreased after 120 μM CuSO4 and Cu-Gly exposure. PepT1 protein expression level was only upregulated after 120 μM Cu-Pro exposure. These findings indicated that extra copper supplementation can induce intestinal epithelial cell injury, and different forms of copper may have differing effects on cell metabolism.


2021 ◽  
Author(s):  
Yiyun Deng ◽  
Zhe Zhang ◽  
Yuanyuan Hong ◽  
Lijuan Feng ◽  
Yong Su ◽  
...  

Abstract Objectives: The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated the activation of mitogen-activated protein kinases (MAP K). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. Methods: Caco-2 cells monolayers were treated with mycophenolic acid (10µM) and/or Sch A (10, 20 and 40µM) at 37°C for 24h, and cell viability was measured by MTT; Western blot and immunofluorescence were used to detect the expression of relevant proteins. Intracellular ROS and apoptosis were measured by flow cytometry, and malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by kits. Results: The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Conclusions: Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway. Conclusions: Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.


2015 ◽  
Vol 29 (7) ◽  
pp. 1793-1808 ◽  
Author(s):  
Christie McCracken ◽  
Andrew Zane ◽  
Deborah A. Knight ◽  
Elizabeth Hommel ◽  
Prabir K. Dutta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document