Evaluation of a novel real-time PCR system for cytomegalovirus DNA quantitation on whole blood and correlation with pp65-antigen test in guiding pre-emptive antiviral treatment

2008 ◽  
Vol 148 (1-2) ◽  
pp. 9-16 ◽  
Author(s):  
Tiziano Allice ◽  
Francesco Cerutti ◽  
Fabrizia Pittaluga ◽  
Silvia Varetto ◽  
Alessandro Franchello ◽  
...  
2009 ◽  
Vol 81 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Avettand-Fènoël Véronique ◽  
Chaix Marie-Laure ◽  
Blanche Stéphane ◽  
Burgard Marianne ◽  
Floch Corinne ◽  
...  

2016 ◽  
Vol 36 (6) ◽  
pp. 603-606 ◽  
Author(s):  
Jong Eun Park ◽  
Ji-Youn Kim ◽  
Sun Ae Yun ◽  
Myoung-Keun Lee ◽  
Hee Jae Huh ◽  
...  

2007 ◽  
Vol 21 (5-6) ◽  
pp. 368-378 ◽  
Author(s):  
Anna Casabianca ◽  
Caterina Gori ◽  
Chiara Orlandi ◽  
Federica Forbici ◽  
Carlo Federico Perno ◽  
...  

2007 ◽  
Vol 140 (1-2) ◽  
pp. 222-227 ◽  
Author(s):  
N. Schvachsa ◽  
G. Turk ◽  
M. Burgard ◽  
D. Dilernia ◽  
M. Carobene ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Viktor Szatmári ◽  
Martin Willem van Leeuwen ◽  
Christine Jantine Piek ◽  
Luigi Venco

Abstract Background Dirofilaria immitis is responsible for heartworm disease in dogs in endemic areas worldwide. Screening for this infection is done by blood tests. Antigen testing is the most sensitive method to detect an infection with adult (female) worms. Microscopic examination of a blood smear or Knott’s test can be used to detect circulating microfilariae, the infective larvae. To increase the sensitivity of the antigen test by decreasing the false negative test results, heating of the blood sample has been recommended in recent guidelines. Heating is believed to remove blocking immune-complexes. Circulating microfilariae are not specific findings for heartworm infection, as other nematodes (among others, Acanthocheilonema dracunculoides) can also result in microfilaremia. Although the type of microfilariae cannot be determined by microscopy alone, real-time PCR can reliably identify the infecting nematode species. Correct identification of the parasite is of major importance, as an infection with D. immitis requires antiparasitic therapy, whereas A. dracunculoides is thought to be a clinically irrelevant coincidental finding. The present case report describes a microfilaremic dog where the initial antigen test for D. immitis turned positive after heat treatment, whereas real-time PCR revealed that the microfilariae were A. dracunculoides (syn. Dipetalonema dracunculoides). Results A circa 5-year old, asymptomatic Spanish mastiff dog was referred for heartworm therapy because microfilariae were found via a screening blood test. The dog was recently imported to the Netherlands from Spain, where it had been a stray dog. Antigen tests on a plasma sample for D. immitis were performed with three different test kits, which all turned out to be negative. However, heat treatment of two of these samples were carried out and both of them led to a positive antigen test result. Real-time PCR showed that the circulating microfilariae belonged to A. dracunculoides species. Three administrations of moxidectin spot-on at monthly intervals resulted in a negative antigen and a negative Knott’s tests one month after the last treatment. Conclusions We conclude that heat treatment of initially negative blood samples for D. immitis could lead to false positive antigen test results if the dog is infected with A. dracunculoides.


2006 ◽  
Vol 52 (4) ◽  
pp. 634-642 ◽  
Author(s):  
Masato Mitsuhashi ◽  
Shigeru Tomozawa ◽  
Katsuya Endo ◽  
Atsushi Shinagawa

Abstract Background: Current gene expression analysis relies on the assumption that the isolated RNA represents all species of mRNA in proportions equal to those in the original materials. No system is available for absolute quantification of mRNA. Methods: We applied whole blood to 96-well filterplates to trap leukocytes. Lysis buffer containing cocktails of specific reverse primers and known concentrations of synthetic external control RNA (RNA34) was added to filterplates, and cell lysates were transferred to oligo(dT)-immobilized microplates for hybridization. We then synthesized the cDNA in the oligo(dT)-immobilized microplates from these primer sites and used the cDNA for real-time PCR. RNA34 acted as a universal control, and gene amplification results were converted to quantities of mRNA per microliter of whole blood after the recovery of RNA34 in each sample was determined. Results: Under fully optimized conditions, both added RNA34 and native mRNA species exhibited ∼10% recovery from whole blood to real-time PCR. When whole blood was stimulated ex vivo, changes in gene expression as low as 30%–40% were detected with statistical significance, and the experimental CVs were low (10%–20%). Conclusion: This new system to estimate mRNA copies per microliter of whole blood may allow standardization of gene-expression–based molecular diagnostics.


Sign in / Sign up

Export Citation Format

Share Document