scholarly journals Impaired cutaneous T-cell attracting chemokine elevation and adipose-derived stromal cell migration in a high-glucose environment cause poor diabetic wound healing

2018 ◽  
Vol 34 (10) ◽  
pp. 539-546 ◽  
Author(s):  
Wei-Ting Wang ◽  
Su-Shin Lee ◽  
Ya-Chin Wang ◽  
Ya-Wei Lai ◽  
Yur-Ren Kuo ◽  
...  
2011 ◽  
Vol 53 (3) ◽  
pp. 774-784 ◽  
Author(s):  
Dustin M. Bermudez ◽  
Junwang Xu ◽  
Benjamin J. Herdrich ◽  
Antoneta Radu ◽  
Marc E. Mitchell ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ursula Hopfner ◽  
Matthias M. Aitzetmueller ◽  
Philipp Neßbach ◽  
Michael S. Hu ◽  
Hans-Guenther Machens ◽  
...  

Introduction. Although chronic wounds are a major personal and economic burden, treatment options are still limited. Among those options, adipose-derived stromal cell- (ASC-) based therapies rank as a promising approach but are restricted by the harsh wound environment. Here we use a commercially available fibrin glue to provide a deliverable niche for ASCs in chronic wounds. Material and Methods. To investigate the in vitro effect of fibrin glue, cultivation experiments were performed and key cytokines for regeneration were quantified. By using an established murine chronic diabetic wound-healing model, we evaluated the influence of fibrin glue spray seeding on cell survival (In Vivo Imaging System, IVIS), wound healing (wound closure kinetics), and neovascularization of healed wounds (CD31 immunohistochemistry). Results. Fibrin glue seeding leads to a significantly enhanced secretion of key cytokines (SDF-1, bFGF, and MMP-2) of human ASCs in vitro. IVIS imaging showed a significantly prolonged murine ASC survival in diabetic wounds and significantly accelerated complete wound closure in the fibrin glue seeded group. CD31 immunohistochemistry revealed significantly more neovascularization in healed wounds treated with ASCs spray seeded in fibrin glue vs. ASC injected into the wound bed. Conclusion. Although several vehicles have shown to successfully act as cell carrier systems in preclinical trials, regulatory issues have prohibited clinical usage for chronic wounds. By demonstrating the ability of fibrin glue to act as a carrier vehicle for ASCs, while simultaneously enhancing cellular regenerative function and viability, this study is a proponent of clinical translation for ASC-based therapies.


Author(s):  
Xin Shi ◽  
Liyuan Jiang ◽  
Xin Zhao ◽  
Bei Chen ◽  
Wei Shi ◽  
...  

The management of diabetic wounds is a therapeutic challenge in clinical settings. Current tissue engineering strategies for diabetic wound healing are insufficient, owing to the lack of an appropriate scaffold that can load a large number of stem cells and induce the interaction of stem cells to form granulation tissue. Herein we fabricated a book-shaped decellularized dermal matrix (BDDM), which shows a high resemblance to native dermal tissue in terms of its histology, microstructure, and ingredients, is non-cytotoxic and low-immunogenic, and allows adipose-derived stromal cell (ASC) attachment and proliferation. Then, a collagen-binding domain (CBD) capable of binding collagen was fused into basic fibroblast growth factor (bFGF) to synthetize a recombinant growth factor (termed as CBD–bFGF). After that, CBD–bFGF was tethered onto the collagen fibers of BDDM to improve its endothelial inducibility. Finally, a functional scaffold (CBD–bFGF/BDDM) was fabricated. In vitro and in vivo experiments demonstrated that CBD–bFGF/BDDM can release tethered bFGF with a sustained release profile, steadily inducing the interaction of stem cells down to endothelial differentiation. ASCs were cultured to form a cell sheet and then sandwiched by CBD–bFGF/BDDM, thus enlarging the number of stem cells loaded into the scaffold. Using a rat model, the ASC sheets sandwiched with CBD–bFGF/BDDM (ASCs/CBD–bFGF/BDDM) were capable of enhancing the formation of granulation tissue, promoting angiogenesis, and facilitating collagen deposition and remodeling. Therefore, the findings of this study demonstrate that ASCs/CBD–bFGF/BDDM could be applicable for diabetic wound healing.


Sign in / Sign up

Export Citation Format

Share Document