scholarly journals Maximum order-index of matrices over commutative inclines: an answer to an open problem

2007 ◽  
Vol 420 (1) ◽  
pp. 228-234
Author(s):  
Song-Chol Han ◽  
Hong-Xing Li
Keyword(s):  
2020 ◽  
Vol 15 (2) ◽  
pp. 9-22
Author(s):  
Pierre Popoli

AbstractBoth the Thue–Morse and Rudin–Shapiro sequences are not suitable sequences for cryptography since their expansion complexity is small and their correlation measure of order 2 is large. These facts imply that these sequences are highly predictable despite the fact that they have a large maximum order complexity. Sun and Winterhof (2019) showed that the Thue–Morse sequence along squares keeps a large maximum order complexity. Since, by Christol’s theorem, the expansion complexity of this rarefied sequence is no longer bounded, this provides a potentially better candidate for cryptographic applications. Similar results are known for the Rudin–Shapiro sequence and more general pattern sequences. In this paper we generalize these results to any polynomial subsequence (instead of squares) and thereby answer an open problem of Sun and Winterhof. We conclude this paper by some open problems.


2013 ◽  
Vol 3 (2) ◽  
pp. 197-202
Author(s):  
Amir Pishkoo ◽  
Maslina Darus

This paper presents a mathematical model that provides analytic connection between four fundamental forces (interactions), by using modified reciprocal theorem,derived in the paper, as a convenient template. The essential premise of this work is to demonstrate that if we obtain with a form of the Yukawa potential function [as a meromorphic univalent function], we may eventually obtain the Coloumb Potential as a univalent function outside of the unit disk. Finally, we introduce the new problem statement about assigning Meijer's G-functions to Yukawa and Coloumb potentials as an open problem.


Author(s):  
Bin Liu ◽  
Jouni Rättyä ◽  
Fanglei Wu

AbstractBounded and compact differences of two composition operators acting from the weighted Bergman space $$A^p_\omega $$ A ω p to the Lebesgue space $$L^q_\nu $$ L ν q , where $$0<q<p<\infty $$ 0 < q < p < ∞ and $$\omega $$ ω belongs to the class "Equation missing" of radial weights satisfying two-sided doubling conditions, are characterized. On the way to the proofs a new description of q-Carleson measures for $$A^p_\omega $$ A ω p , with $$p>q$$ p > q and "Equation missing", involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of q-Carleson measures for the classical weighted Bergman space $$A^p_\alpha $$ A α p with $$-1<\alpha <\infty $$ - 1 < α < ∞ to the setting of doubling weights. The case "Equation missing" is also briefly discussed and an open problem concerning this case is posed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Vassili N. Kolokoltsov

Quantum games and mean-field games (MFG) represent two important new branches of game theory. In a recent paper the author developed quantum MFGs merging these two branches. These quantum MFGs were based on the theory of continuous quantum observations and filtering of diffusive type. In the present paper we develop the analogous quantum MFG theory based on continuous quantum observations and filtering of counting type. However, proving existence and uniqueness of the solutions for resulting limiting forward-backward system based on jump-type processes on manifolds seems to be more complicated than for diffusions. In this paper we only prove that if a solution exists, then it gives an ϵ-Nash equilibrium for the corresponding N-player quantum game. The existence of solutions is suggested as an interesting open problem.


2017 ◽  
Vol 67 (1) ◽  
pp. 221-226
Author(s):  
Adela Mihai

Abstract In this paper we construct examples of different types of connections starting from a semi-symmetric metric connection g, for example a connection which is a symmetric metric connection with respect to a conformally related metric, but symmetric non-metric with respect to the initial metric. We formulate an open problem: to find a parallel complex structure on a Kaehler manifold with respect to such a new connection.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1447
Author(s):  
Jose P. Suárez ◽  
Agustín Trujillo ◽  
Tania Moreno

Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the stability condition or not is still an open problem. Some reasons, in part, are due to the cost for achieving the computation of similarity classes of millions of tetrahedra. We prove the existence of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been no evidence confirming its existence. We also introduce a new data structure and algorithm for computing the number of similarity tetrahedral classes based on integer arithmetic, storing only the square of edges. The algorithm lets us perform compact and efficient high-level similarity class computations with a cost that is only dependent on the number of similarity classes.


2021 ◽  
Vol 179 (4) ◽  
pp. 361-384
Author(s):  
Zbyněk Křivka ◽  
Alexander Meduna

This paper investigates the reduction of scattered context grammars with respect to the number of non-context-free productions. It proves that every recursively enumerable language is generated by a scattered context grammar that has no more than one non-context-free production. An open problem is formulated.


2017 ◽  
Vol 160 ◽  
pp. 31-41 ◽  
Author(s):  
Nil Kamal Hazra ◽  
Mithu Rani Kuiti ◽  
Maxim Finkelstein ◽  
Asok K. Nanda

Sign in / Sign up

Export Citation Format

Share Document