Etodolac induces apoptosis and inhibits cell adhesion to bone marrow stromal cells in human myeloma cells

2006 ◽  
Vol 30 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Satoki Nakamura ◽  
Miki Kobayashi ◽  
Kiyoshi Shibata ◽  
Naohi Sahara ◽  
Kazuyuki Shigeno ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5142-5142
Author(s):  
Akio Mori ◽  
Yutaka Tsutsumi ◽  
Satoshi Hashino ◽  
Hiroe Kanamori ◽  
Makoto Ibata ◽  
...  

Abstract Thalidomide (Thal) alone or in combination with steroids achieves responses even in the setting of refractory multiple myeloma (MM), however, responses are still limited. The precise mechanism of Thal action is unknown, further, no distinct marker, which could prognosticate the efficacy of Thal, is known. Therefore, we evaluated the correlation between the efficacy of Thal and the potent prognostic factors in patients with refractory MM. Ten patients with refractory MM received Thal at doses of 50 or 100 mg per day and steroids, either dexamethasone (Dex) or prednisolone (PSL). Dex was administrated 20 mg per day, 4 days every 28 days, and PSL was administrated 10 mg per day. The median age was 71.5 years (range, 62–79 years) and 20 % were man, and all patients were diagnosed as clinical stage IIIA based on the Durie and Salmon classification. The therapeutic response was assessed according to the modified criteria of Southwest Oncology Group (SWOG). Among 10 patients, 7 patients were the responders; 2 had complete remission, 3 had partial remission, and 2 had minimal remission. There were no differences in the pretreatment characteristics of responders and nonresponders (age, sex, type and concentration of serum and/or urine monoclonal component, international prognostic index, presence of bone lesion, and chromosomal abnormalities). However, flow cytometric evaluation of the myeloma cells revealed that CD56, which is one of the adhesion molecules N-CAM, expressed more than 45 % in all responders, while those expressed less than 5 % in all nonresponders (84 ± 19 (±SD) % v/s 4 ± 2 %, P=0.017). Furthermore, CD56 expression of the myeloma cells was reduced from 84% to 70 ± 32 % after Thal therapy in all evaluated responders (P =0.048). These results suggest that CD56 expression of the myeloma cells could be the potent prognostic marker of the Thal efficacy. Moreover, it was reported that Thal reduced the expression of cell adhesion molecules, such as LFA-1 and ICAM-1, and abrogated the binding of MM cells to bone marrow stromal cells, that triggered the secretion of interleukin-6 and vascular endothelial growth factor. Taken together, it was suggested that Thal reduced the expression of CD56 and altered the MM cell adhesion to bone marrow stromal cells, and that could be one of the pathogenesis of anti-MM activity of Thal.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4836-4836
Author(s):  
Satoki Nakamura ◽  
Miki Kobayashi ◽  
Kiyoshi Shibata ◽  
Naohi Sahara ◽  
Kazuyuki Shigeno ◽  
...  

Abstract Cyclooxygenase-2 (COX-2) is reported to regulate apoptosis and to be an important cellular target for therapy. In this study, we demonstrated that etodolac, a COX-2 inhibitor, inhibited proliferation and induced apoptosis in myeloma cell lines (RPMI 8226 and MC/CAR cells), expressing the COX-2 enzyme. In both cell lines, etodolac more strongly induced apoptosis compared with thalidomide or meloxicam. Etodolac induced down-regulation of bcl-2 protein and mRNA, activation of caspase-9, -7 and -3, down-regulation of caspase inhibitors, cIAP-1 and survivin, and loss of mitochondrial membrane potential in a dose-dependent manner. In addition, our data demonstrated that when myeloma cells were coincubated with 50 mM etodolac on bone marrow stromal cells (BMSC), myeloma cell adhesion to BMSC was significantly inhibited compared with thalidomide or meloxicam coincubation, and the adhesion molecules VLA-4, LFA-1 (CD11a), CXCX4, and CD44 were suppressed on myeloma cells treated with etodolac. Moreover, we found that 100 mM R-etodolac, S-etodolac, and the combination of R- and S-etodolac, which are the stereoisomers of etodolac, slightly inhibited the proliferation of myeloma cells, while 50 to 100 mM etodolac significantly inhibited the proliferation of myeloma cells. In conclusion, our findings indicate that etodolac induced apoptosis via a bcl-2 dependent pathway, suppressed the expression of adhesion molecules, and inhibited myeloma cell adhesion to BMSC compared with thalidomide or meloxicam. Thus, the activities of etodolac potentially extend to the treatment of patients with myeloma resistant to standard chemotherapy, including thalidomide.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xueli Mao ◽  
Zetao Chen ◽  
Junqi Ling ◽  
Jingjing Quan ◽  
Hui Peng ◽  
...  

Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3353-3353
Author(s):  
Ramadevi Nimmanapalli ◽  
Elvira Gerbino ◽  
William S. Dalton ◽  
Melissa Alsina

Abstract Multiple myeloma (MM) is characterized by the clonal proliferation of malignant plasma cells that accumulate preferentially in the bone marrow. In spite of high dose chemotherapy and novel targeted therapies this disease remains incurable with a median survival of 3–6 years mainly because of the emergence of drug resistance. Improved survival requires new strategies to prevent relapse. Heat shock proteins (HSPs) are a super family of highly conserved proteins, which are induced in plant, yeast, bacterial and mammalian cells in response to an array of physiological and environmental stress cues. Among heat shock protein families, HSP70 is one of the most highly conserved and is the only protein expressed in response to cellular stress. Exogenous HSP70 has been demonstrated to act as a cytokine to human monocytes by stimulating rapid calcium influx, activating nuclear factor (NF)-kB and up-regulating the expression of IL-1b, IL-6 and tumor necrosis factor alpha (TNF-a) (Asea A et al., 2000). Adhesion of myeloma cells to bone marrow stromal cells mediates IL-6 secretion and tumor cell proliferation in part mediated by STAT-3 activation (Cheung WC et al., 2001). We have shown that adhesion of myeloma cells to bone marrow stromal cells enhances IL-6 secretion by stromal cells and HSP70 secretion by myeloma cells. When we inhibited the HSP70 expression using either KNK437 (HSF-1 inhibitor) or RNAi to HSP70, IL-6 secretion by stromal cells as well as activation of STAT-3 in myeloma cells was inhibited in dose-dependent manner. These results suggest that HSP70 released from myeloma cells is enhancing IL-6 secretion from stromal cells. Incubation of stromal cells with recombinant HSP70 did not enhance IL-6 secretion in stromal cells suggesting that some other soluble factor released from myeloma cells cooperates with HSP70 to enhance IL-6 secretion by stromal cells, We examined whether HSP70 can modulate IL-6 mediated STAT-3 activation by stimulating 8226 cells with IL-6 in the presence or absence of KNK437 and RNAi to HSP70 and measuring phospho-STAT-3 by western analysis. HSP70 inhibition attenuated IL-6 induced STAT-3 activity, but not ERK1/2 activity, indicating that HSP70 mediated IL-6 signaling is very specific to STAT-3. The signal transduction cascade by which HSP70 induces IL-6 secretion and the mechanism by which HSP70 mediates IL-6 induced STAT-3 activity are currently under investigation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2510-2510
Author(s):  
Seong-Woo Kim ◽  
Jin-Hee Hwang ◽  
Hwan-Jung Yun ◽  
Samyong Kim ◽  
Deog-Yeon Jo

Abstract Stromal cell-derived factor-1 (SDF-1) plays a role in the homing of myeloma cells to bone marrow. In addition, SDF-1 modestly enhances the proliferation of myeloma cells and inhibits Dexmethasone (Dex)-induced apoptosis of the cells. Dex is currently used to treat multiple myeloma, based on its apoptic effects. In this study, we investigated the regulatory effects of Dex on SDF-1 production in bone marrow stromal cells (BMSCs) and on CXCR4 expression in myeloma cells. As previously reported, it was evident that primary myeloma cells (CD138+ cells obtained from patients with multiple myeloma) and Dex-resistant myeloma cell line RPMI8226 expressed CXCR4 and responded to SDF-1, resulting in chemotaxis. SDF-1 modestly stimulated the proliferation of primary myeloma cells and RPMI8226 cells and protected the cells from Dex-induced apoptosis. Human umbilical vein endothelial cells transduced with the SDF-1 gene using adenoviral vectors better supported the formation of cobblestone areas of primary myeloma cells and RPMI8226 cells in co-culture, similar to hematopoietic progenitor cells; this was blocked by pretreating the myeloma cells with pertussis toxin, indicating that SDF-1 plays a critical role not only in migration of the cells underneath the SDF-1-producing stromal cells but also in proliferation of the cells in contact. Dex up-regulated CXCR4 expression in RPMI8226 cells; however, its regulatory effects on CXCR4 in primary myeloma cells differed among patients. RT-PCR and Northern blot analyses revealed that Dex down-regulated SDF-1 mRNA expression in both primary BMSCs and murine stromal MS-5 cells in a dose-dependent manner. Western blot analysis and ELISA assay confirmed that Dex inhibited SDF-1 production in BMSCs. Furthermore, Dex inhibited cobblestone area formation of RPMI8226 cells in co-culture with MS-5. Interestingly, Dex up-regulated CXCR4 mRNA expression and cytoplasmic CXCR4 in BMSCs. These results indicate that Dexamethasone induces the down-regulation of SDF-1 production in BMSCs, which might mediate, at least in part, its anti-myeloma effects in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3450-3450
Author(s):  
Erik A. Nelson ◽  
Teru Hideshima ◽  
Laurie Gashin ◽  
Sarah R. Walker ◽  
Rebecca A. Lynch ◽  
...  

Abstract Activation of the transcription factor STAT3 is essential for the pathogenesis of many cancers, including multiple myeloma. While normal cells can tolerate a reduction in STAT3 function, tumors often require constitutive STAT3 signaling for survival. Thus, identifying drugs that inhibit STAT3 activity may provide new therapeutic agents useful for cancer treatment. We have developed a high throughput cell-based screen to identify drugs that inhibit STAT3-dependent transcriptional activity. To assure the specificity of these drugs for STAT3 function, we performed a counter screen assessing NF-kappaB-dependent transcriptional activity. To bypass the difficulties inherent in the development of novel small molecules for clinical use, we analyzed a library of 1120 drugs that are either FDA approved, or are otherwise known to be safe in humans. From this screen, we identified nifuroxazide, a drug used to treat dehydration associated with diarrheal illness, as a potent inhibitor of STAT3 transcriptional activity. By contrast, nifuroxazide has no effect on NF-kappaB-dependent transcription. Myeloma cells containing constitutive STAT3 activation show decreased STAT3 tyrosine phosphorylation when incubated with 10 uM nifuroxazide. In addition, expression of STAT3 target genes necessary for myeloma survival, including bcl-x, mcl-1, and cyclin D1, is markedly reduced by 10 uM nifuroxazide. To determine whether these effects of nifuroxazide on STAT3 signaling alter cell viability, we utilized U266 myeloma cells, which depend on STAT3 activation for survival. U266 viability is inhibited by nifuroxazide at an EC50 of approximately 3 uM. Notably, RPMI 8226 myeloma cells, which do not contain activated STAT3, are not affected by comparable concentrations of nifuroxazide. In addition, this dose has no effect on normal peripheral blood mononuclear cells. Given that myeloma cells receive survival signals from bone marrow stromal cells, we determined if nifuroxazide affects myeloma survival in stromal cell co-cultures. Nifuroxazide is effective at reducing U266 viability in the presence of bone marrow stromal cells at an EC50 of approximately 3 uM. Thus, screening for compounds that inhibit STAT3 transcriptional activity is useful in identifying potential drugs for myeloma therapy. Through this approach, we have identified a novel STAT3 inhibitory function for nifuroxazide. Nifuroxazide inhibits STAT3 mediated survival of myeloma cells and may be useful, either alone or in combination with other drugs, for the treatment of patients with multiple myeloma.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4987-4987
Author(s):  
Hiroshi Ikeda ◽  
Yuka Aoki ◽  
Nasanori Nojima ◽  
Hiroshi Yasui ◽  
Toshiaki Hayashi ◽  
...  

Abstract Abstract 4987 The Bone marrow (BM) microenvironment plays crucial role in pathogenesis of Multiple myeloma(MM). Myeloma cells contacts with bone marrow stromal cells (BMSCs), which secrete factors/cytokines, promoting tumor cell growth and survival. Paracrine secretion of cytokines(i. e., interleukin-6 (IL-6) insulin-like growth factor-1, inflammatory protein-1a) in BM stromal cells promotes multiple myeloma cell proliferation and protects against drug-induced cytotoxicity. These cytokines provide stimulatory signals for multiple myeloma growth and survival. Bone involvement is a common feature in MM patient, solid and hematologic cancers. MM localizes to the bone in nearly all patients ranges between 40% and 75%. Disease-related skeletal complications result in significant morbidity due to pain, pathologic fractures and spinal cord compression. The bone microenvironment creates a supportive niche for tumor growth. Osteoclasts and bone marrow stromal cells, along with extracellular matrix and cytokines stimulate tumor cell proliferation and confer chemoresistance. Therefore, the reciprocal interactions between tumor cells, osteoclasts, osteoblasts, and bone marrow stromal cells present an important. In current study, monocyte can directly promote mesenchymal stem cells osteogenic differentiation through cell contact interactions, thus resulting in the production of osteogenic factors by the monocytes. This mechanism is mediated by the activation of STAT3 signaling pathway in the mesechymal stem cells that leads to the upregulation of Osteoblasts-associated genes such as Runx2 and alkaline phosphatase (ALP), and the down-regulation of inhibitors such as DKK1 to drive the differentiation of mesechymal stem cells into osteoblasts. In this study, we examined the role of monocyte, component of BM cells, as a potential niche component that supports myeloma cells. We investigated the proliferation of MM cell lines cultured alone or co-cultured with BM stromal cells, monocytes, or a combination of BM stromal cells and monocytes. Consistently, we observed increased proliferation of MM cell lines in the presence of either BM stromal cells or monocytes compared to cell line-only control. Furthermore, the co-culture of BM stromal cells plus monocytes induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, BMSCs and monocytes decreased the rate of apoptosis of myeloma cells. Our results therefore suggest that highlights the role of monocyte as an important component of the BM microenvironment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document