CNOT7 modulates biological functions of ovarian cancer cells via AKT signaling pathway

Life Sciences ◽  
2021 ◽  
Vol 268 ◽  
pp. 118996
Author(s):  
Jiangtao Yu ◽  
Xiaoli Hu ◽  
Xiuxiu Chen ◽  
Qiangyong Zhou ◽  
Qi Jiang ◽  
...  
2021 ◽  
Author(s):  
Yuanyuan An ◽  
Hua Duan

Abstract Introduction: Dysregulation of fatty acid metabolism often occurs in tumor, which mainly constitutes of fatty acid synthesis and oxidation. In recent years, studies found that fatty acid metabolism participated in regulation of tumor immune microenvironment, which further influenced the progress of cancer. Thus, it is important to explore the key fatty acid metabolism-related molecules, which not only affects the prognosis of ovarian cancer, but also shows a close correlation with immune microenvironment of cancer.Methods: Database from TCGA was used to explore the fatty acid metabolism-related molecules, which correlated with the prognosis of ovarian cancer using univariate and multivariate cox proportional regression model. Nomogram was constructed to predict the prognostic probability based on ACSM3 and clinicopathological parameters. GDSC database was used to investigate the chemosensitivity of ovarian cancer cells. The correlation between ACSM3 and immune status of ovarian cancer was analyzed by TIMER and TISIDB online tools. In addition, CCK8 assay was used to investigate the chemosensitivity of ovarian cancer cells, real time-PCR and western blot were used to investigate the expression of chemoresistance-related genes.Results: ACSM3 worked as an independent favorable prognostic molecule through univariate and multivariate cox regression analysis. For the use in clinical, nomogram was constructed, and higher expression of ACSM3 showed better prognosis. We found that ACSM3 could regulate PI3K/AKT signaling, and GDSC database showed that PI3K/AKT inhibitor could promote the chemosensitivity of ovarian cancer cells. In addition, the expression of ACSM3 showed significantly correlated with the immune status of ovarian cancer. In vitro experiments showed that ACSM3 can promote the chemosensitivity of ovarian cancer cells by inhibiting PI3K/AKT signaling pathway.Conclusion: Our results showed that ACSM3 acted as a favorable prognostic-related biomarker for ovarian cancer, which could promote chemosensitivity of ovarian cancer through inhibiting PI3K/AKT signaling pathway. This might be due to participate in regulating immune status of ovarian cancer microenvironment.


2015 ◽  
Vol 36 (3) ◽  
pp. 956-965 ◽  
Author(s):  
Qiaoyun Chen ◽  
Rong Qin ◽  
Yue Fang ◽  
Hao Li

Background: Berberine, a well-known component of the Chinese herbal medicine Huanglian, has wide range of biochemical and pharmacological effects, including antineoplastic effect, but the exact mechanisms remain unclear. The aim of the present study was to evaluate the potential chemo-sensitization effect of berberine in ovarian cancer cell line A2780. Methods: The expression of miR-93 was measure by RT-PCR. The target of miR-93 was confirmed by luciferase activity assay. Hoechst 33258 staining, Annexin V and PI double staining were used for apoptosis analysis. Results: In this study, we found A2780/DDP cells that were incubated with berberine combined with cisplatin had a significantly lower survival than the control group. Berberine enhanced cisplatin induced apoptosis and induced G0/G1 cell cycle arrest in A2780 cells. Next, we observed that the miR-93 levels in cisplatin resistant cell lines were higher than that in cisplatin sensitive cell lines. Furthermore, our study found berberine could inhibit miR-93 expression and function in ovarian cancer, as shown by an increase of its target PTEN, an important tumor suppressor in ovarian cancer. A2780 cells that were treated with PTEN siRNA had increased survival compared to NC group and this could be partly alleviated by the AKT inhibitor Triciribine. More importantly, A2780 cells that were treated with PTEN siRNA had a survival pattern that is similar to cells with miR-93 overexpression. Conclusion: The results suggested that berberine modulated the sensitivity of cisplatin through miR-93/PTEN/AKT signaling pathway in the ovarian cancer cells.


2017 ◽  
Vol 70 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Zeinab Amini-Farsani ◽  
Mohammad Hossein Sangtarash ◽  
Mehdi Shamsara ◽  
Hossein Teimori

Author(s):  
Jie Ni ◽  
Ying Chen ◽  
Beibei Fei ◽  
Yan Zhu ◽  
Yibei Du ◽  
...  

Background: MicroRNAs are endogenous small noncoding RNAs, which play a critical role in regulating various biological and pathologic processes. Furthermore, miR-301a has been detected to be overly expressed in tumorigenic progression of ovarian cancer. However, the effects of miR-301a on ovarian cancer are still unclear. Objective: The objective of this study is to investigate the molecular mechanisms of miR-301a in epithelial ovarian cancer cells. Methods: The miR-301a expression in ovarian cancer cells was detected. Then, cell proliferation, cell cycle, and apoptosis of the miR-301a-mimic-transfected ovarian cancer cells were determined, as well as the effects of the miR-301a mimic on the PTEN/phosphoinositide 3-kinase (PI3K) signaling pathway were explored. Results: We found that the miR-301a expression levels were markedly upregulated in ovarian cancer tissues and cells, and upregulation of miR-301a-promoted cell viability and proliferation. Our results also showed that the miR-301a-mimic accelerated cell cycle progression of ovarian cancer cells by targeting the CDK4/Cyclin-D1 pathway but not the CDK2/Cyclin-E pathway. Moreover, transfection of the miR-301a mimic into ovarian cancer cells could decrease the PTEN expression while increasing the PI3K and Akt phosphorylation, as compared with the miR-301a inhibitor group and the negative control group. Conclusion: Therefore, miR-301a should be an oncogene in ovarian cancer, and overexpression of miR-301a promoted proliferation of ovarian cancer cells by modulating the PTEN/PI3K/Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document