Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system

LWT ◽  
2006 ◽  
Vol 39 (6) ◽  
pp. 591-597 ◽  
Author(s):  
Won Y. Choi ◽  
Chong M. Lee ◽  
Hyun J. Park
Author(s):  
Vandon T. Borela ◽  
Dhian Ashley DS. Apolinar

Purpose: The aim of this study is to examine the potential of Cellulose Nanofiber(CNF) isolated from the banana peel through chemical treatment(Alkaline Treatment, Bleaching and Acid Hydrolysis) as reinforcing agent in Soy Protein Isolate films. It also aims to find an application for this agro-industrial residue as a biodegradable material for food packaging. Study Design: Experimental Design. Materials and Methods: Chemicals such as Sodium metabisulfite, Ethanol, Potassium hydroxide, Sodium hypochlorite, Acetic Acid, Sulfuric acid, Glycerol, Sodium Hydroxide, and Hydrochloric Acid were bought from a chemical depot. FTIR Spectroscopy, SEM Imaging, Tensile Strength Test, Dimensional Stability to Heat Test were performed. Results: The results of the tests conducted(FTIR Spectroscopy, SEM Imaging, Tensile Strength Test, Dimensional Stability to Heat Test and Stability in Acidic and Alkaline Conditions Test) showed that CNFs isolated from the banana effectively reinforced the properties of Soy Protein Isolate films. Furthermore, the films fabricated are still biodegradable, displaying that the addition of the CNF does not have any significant effect on the biodegradability of the films. Conclusion: It is concluded that the addition of Banana Peel CNFs as retrofitting material to the Soy Protein Films materially strengthen the mechanical properties of the films and makes it more suitable for food packaging applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (85) ◽  
pp. 82191-82204 ◽  
Author(s):  
Mehraj Ahmad ◽  
Nilesh Prakash Nirmal ◽  
Mohammed Danish ◽  
Julalak Chuprom ◽  
Shima Jafarzedeh

Composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1536
Author(s):  
Pang ◽  
Zhao ◽  
Qin ◽  
Zhang ◽  
Li

It remains a great challenge to fabricate bio-based soy protein isolate (SPI) composite film with both favorable water resistance and excellent mechanical performance. In this study, waterborne epoxy emulsions (WEU), which are low-cost epoxy crosslinkers, together with mussel-inspired dopamine-decorated silk fiber (PSF), were used to synergistically improve the water resistance and mechanical properties of SPI-based film. A stable crosslinking network was generated in SPI-based films via multiple physical and chemical combinations of WEU, PSF, and soy protein matrixes, and was confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and solid state 13C nuclear magnetic resonance (13C NMR). As expected, remarkable improvement in both water resistance and Young’s modulus (up to 370%) was simultaneously achieved in SPI-based film. The fabricated SPI-based film also exhibited favorable thermostability. This study could provide a simple and environmentally friendly approach to fabricate high-performance SPI-based film composites in food packaging, food preservation, and additive carrier fields.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Author(s):  
Ozan Tas ◽  
Ulku Ertugrul ◽  
Mecit Halil Oztop ◽  
Bekir Gokcen Mazı

Sign in / Sign up

Export Citation Format

Share Document