Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour

LWT ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yu Xiao ◽  
Guangliang Xing ◽  
Xin Rui ◽  
Wei Li ◽  
Xiaohong Chen ◽  
...  
2000 ◽  
Vol 6 (3) ◽  
pp. 251-258 ◽  
Author(s):  
C. Reyes-Moreno ◽  
C.A. Romero-Urias ◽  
J. Milan-Carrillo ◽  
R.M. Gomez-Garza

Solid state fermentation (SSF) represents a technological alternative for a great variety of legumes and cereals, or combinations of them, to improve their nutritional quality and to obtain edible products with palatable sensorial characteristics. Chickpeas (Cicer arietinum L.) are prone to develop the hardening phenomenon, also known as hard-to-cook (HTC) defect, when stored under adverse conditions of high temperature (≥ 25 °C) and high relative humidity (≥ 65%). This hard-to-cook phenomenon causes increases in cooking time, decreases in nutritional quality and deterioration of sensorial attributes of chickpea. The objective of this work was to study the effect of SSF on chemical composition and nutritional quality of fresh and hardened chickpeas. The hardening of chickpea ( Cicer arietinum L. Blanco Sinaloa 92 variety) for human consumption, was produced by accelerated storage (33-35 °C, RH = 75%, 180 days). A Rhizopus stolonifer spore suspension (1 x 106 spores/mL) was used as starter for the fermentation. The temperature and time of the SSF process were 35.8 °C and 42.7 h, respectively. The tempeh was obtained from fresh and hardened chickpea. The SSF process caused a significant increase ( p ≤ 0.05) in crude protein, true protein (19.6-19.9 to 23.2-23.4%), protein solubility, in vitro digestibility (68.6-73.1% to 79.9-80.5%), available lysine (2.19-3.04 to 3.19-4.07 g lysine/ 16 N), palmitic acid, and stearic acid, and a significant decrease ( p ≤ 0.05) in lipids, minerals, linoleic acid, phytic acid (8.82-10.73 to 2.11 g phytic acid/g dry matter), and tannins (16.1-22.4 to 3 mg catechin/g dry matter). The SSF process improved significantly the quality of fresh and hardened chickpea.


2014 ◽  
Vol 10 ◽  
pp. 210-222 ◽  
Author(s):  
Yu Xiao ◽  
Guangliang Xing ◽  
Xin Rui ◽  
Wei Li ◽  
Xiaohong Chen ◽  
...  

2009 ◽  
Vol 52 (6) ◽  
pp. 1555-1562 ◽  
Author(s):  
Cristina Moreira da Silveira ◽  
Eliana Badiale-Furlong

Functional properties of fermented bran produced by Aspergillus oryzae and Rhizopus sp. in a solid-state fermentation system were determined, with an aim to evaluate their application in food formulation. The defatted rice bran and wheat bran were inoculated with the spores of the cultures and incubated at 30º C for 72 h. Samples were withdrawn at 0, 24, 48 and 72 h. Protein content, protein solubility, in-vitro digestibility, gelation and water holding capacity were determined in bran with or without fermentation. Rhizopus sp. increased significantly the protein content (69.0 and 56.0%, respectively, for defatted rice bran and wheat bran); protein solubility (28.5 and 36.2) and water holding capacity (11.4% for wheat bran). When A. oryzae was used all these properties were modified significantly after fermentation.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 590 ◽  
Author(s):  
Ling Xu ◽  
Feng Wang ◽  
Zhicai Zhang ◽  
Norman Terry

Polysaccharides are an important class of bioactive components of medical mushroom and herbs and are now used as natural drugs or dietary supplements on a global scale. In this paper, we aimed to increase the polysaccharide production of Cordyceps militaris and the antioxidant activities of fermented rice by solid-state fermentation. The media components and culture condition were optimized by orthogonal design and mono-factor tests using rice as the raw material. The optimal media consisted of (g/L): rice (50), fructose (7), glycerin (7), peptone (1), MgCl2 (0.11), VB1 (0.05), VB2 (0.05), CaCl2 (1.5), corn bran (6), and a water–materials ratio of 100%. The fermentation condition was as follows: inoculum volume of 5.5% (v/w), rice weight of 50 g in one bowl with a diameter of 120 mm and a depth of 90 mm, incubation temperature of 26 °C, and incubation time of seven days. Under the optimized condition, the maximal C. militaris polysaccharide content and free radical scavenging ratio were 68.3 mg/g dry substrate and 98.9%, respectively. This study provides a new strategy for the production of healthy food from traditional food.


2017 ◽  
Vol 55 (4) ◽  
Author(s):  
Shih-Jeng Huang ◽  
◽  
Fu-Kuei Huang ◽  
Yu-Shan Li ◽  
Shu-Yao Tsai ◽  
...  

1995 ◽  
Vol 19 (5) ◽  
pp. 319-329 ◽  
Author(s):  
ANA LOURDES ROMERO-BARANZINI ◽  
GRELDA ACELA YÁÑEZ-FARÍAS ◽  
JESUS MANUEL BARRÓN-HOYOS

Sign in / Sign up

Export Citation Format

Share Document