Storage temperature of tiger nuts (Cyperus esculentus L) affects enzyme activity, proximate composition and properties of lactic acid fermented tiger nut milk derived thereof

LWT ◽  
2021 ◽  
Vol 137 ◽  
pp. 110417
Author(s):  
Nazir Kizzie-Hayford ◽  
Kwabena Dabie ◽  
Baffour Kyei-Asante ◽  
Jerry Ampofo-Asiama ◽  
Susann Zahn ◽  
...  
Author(s):  
Lourdes Bosch ◽  
María Auxiliadora Dea Ayuela ◽  
Hortensia Rico ◽  
Jose M. Soriano

Tiger nut (Cyperus esculentus L.), also known as chufa (European sedge), is a member of the Cyperaceae family, which is used in organic and conventional agriculture for its small edible tubers and grown in temperate and tropical zones of the world being consumed raw, roasted or pressed for its juice as beverage. The aim of this study is analyzing the proximate composition (AOAC methods), total phenolic content (Folin-Ciocalteu method), total antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC) and microbiological profile (International Standard Organization norms, ISO) of samples of Spanish organic and conventional, Nigerian conventional and unknown origin tiger nuts obtained from supermarkets and local markets in Spain. No significant differences in proximate composition and antioxidant properties were found between Spanish organic and conventional tiger-nuts, except in total phenolic level (p<0.005). No significant differences were found in all samples about ash, lipid, total sugar and carbohydrate values, but significant differences (p<0.005) were found for moisture, protein, fiber and antioxidant capacity between Spanish samples and Nigerian or unknown origin samples. No coagulase-positive staphylococci, nor Salmonella spp. were detected in any of the studied samples. Significant differences (p<0.005) were found for moulds and yeasts between analysed samples, but no significant differences were detected in other microorganisms.  


2015 ◽  
Vol XXI (3) ◽  
pp. 199-213 ◽  
Author(s):  
María de la Luz Romero-Tejeda ◽  
◽  
María Teresa Martínez-Damián ◽  
Juan Enrique Rodríguez-Pérez ◽  
◽  
...  

2020 ◽  
pp. 32-42
Author(s):  
S. Aforijiku ◽  
S. M. Wakil ◽  
A. A. Onilude

Aim: This work was carried out to investigate the influence of Lactic Acid Bacteria (LAB) on organoleptic quality and proximate composition of yoghurt, and viability of starter cultures in yoghurt. Methods: The LAB starter cultures were selected based on their ability to produce diacetyl and lactic acid. Results: Lactobacillus caseiN1 produced the highest quantity (2.72 g/L) of diacetyl at 48 hrs of incubation while Pediococcus acidilacticiG1 had the lowest amount (0.50 g/L). The pH of produced yoghurt ranged between 4.40 and 5.58 while the corresponding lactic acid contents ranged between 0.70 and 0.96 g/L. Yoghurt produced with cow milk inoculated with L. PlantarumN24 and L. BrevisN10 had the lowest pH (4.40) at significant level of P≤0.05. Yoghurt with mixed culture of L. PlantarumN24 and L. PlantarumN17 had the highest protein content (5.13%) while spontaneous fermentation (control) produced the least (0.48%). Yoghurt produced from cow milk inoculated with L. PlantarumN24 and L. PlantarumN17 was rated best with overall acceptability (9.0) during first day of storage while the commercial yoghurt (5.8) and spontaneous fermentation (6.8) had least overall acceptability at P≤0.05. Conclusion: Yoghurt samples stored in refrigerator had more viable LAB counts for a period of 21 days while the samples stored at room temperature had a day count except for yoghurt produced with cow milk inoculated with L. plantarumN24 which retained its viability at the second day. The yoghurt produced with selected LAB starters are better than commercial yoghurt in terms of sensory properties, proximate composition, pH and viability.


2011 ◽  
Vol 74 (4) ◽  
pp. 631-635 ◽  
Author(s):  
VASILIKI A. BLANA ◽  
AGAPI I. DOULGERAKI ◽  
GEORGE-JOHN E. NYCHAS

Fifteen fingerprints (assigned to Leuconostoc spp., Leuconostoc mesenteroides, Weissella viridescens, Leuconostoc citreum, and Lactobacillus sakei) of 89 lactic acid bacteria (LAB) isolated from minced beef stored under modified atmospheres at various temperatures were screened for their ability to exhibit autoinducer-2 (AI-2)–like activity under certain growth conditions. Cell-free meat extracts (CFME) were collected at the same time as the LAB isolates and tested for the presence of AI-2–like molecules. All bioassays were conducted using the Vibrio harveyi BAA-1117 (sensor 1−, sensor 2+) biosensor strain. The possible inhibitory effect of meat extracts on the activity of the biosensor strain was also evaluated. AI-2–like activity was observed for Leuconostoc spp. isolates, but none of the L. sakei strains produced detectable AI-2–like activity. The AI-2–like activity was evident mainly associated with the Leuconostoc sp. B 233 strain, which was the dominant isolate recovered from storage at 10 and 15°C and at the initial and middle stages of storage at chill temperatures (0 and 5°C). The tested CFME samples displayed low AI-2–like activity and inhibited AI-2 activity regardless of the indigenous bacterial populations. The LAB isolated during meat spoilage exhibited AI-2–like activity, whereas the LAB strains retrieved depended on storage time and temperature. The production of AI-2–like molecules may affect the dominance of different bacterial strains during storage. The results provide a basis for further research concerning the effect of storage temperature on the expression of genes encoding AI-2 activity and on the diversity of the ephemeral bacterial population.


Author(s):  
Yuni Trisnawita ◽  
Jansen Silalahi ◽  
Siti Morin Sinaga

Objective: The aim of this study was to determine the effect of storage condition on viability of lactic acid bacteria (LAB) in probiotic product.Methods: Four different of probiotic products used were A (Lacto B), B (Rillus), C (Interlac), and D (Lacbon) containing single or mixed LAB. The product was stored at temperature of 4°C and 28°C for 28 days. Viability test of LAB was done by counting a number of colony bacteria that live on de man, Rogosa, and Sharpe Agar.Results: The results of the study showed that counts of the LAB colonies in product A were less at the label (5.04×107 cfu/sachet), whereas in products B, C, and D were matching with the label. Storage at a temperature of 28°C for 28 days showed significant loss on the viability of LAB in product C (p<0.05).Conclucion: Storage temperature affecting on viability of LAB in probiotic product where storage at temperature 4°C is higher than 28°C for 28 days.


Fermentation ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 3 ◽  
Author(s):  
Elena Roselló-Soto ◽  
Cyrielle Garcia ◽  
Amandine Fessard ◽  
Francisco Barba ◽  
Paulo Munekata ◽  
...  

Tiger nut (Cyperus esculentus) is a tuber that can be consumed raw or processed into beverages. Its nutritional composition shows a high content of lipid and dietary fiber, close to those of nuts, and a high content of starch, like in other tubers. Tiger nuts also contain high levels of phosphorus, calcium, and phenolic compounds, which contribute to their antioxidant activity. From those characteristics, tiger nuts and derived beverages are particularly relevant to limit food insecurity in regions where the plant can grow. In Europe and United States, the tiger nut derived beverages are of high interest as alternatives to milk and for gluten-free diets. Fermentation or addition of probiotic cultures to tiger nut beverages has proven the ability of lactic acid bacteria to acidify the beverages. Preliminary sensory assays concluded that acceptable products are obtained. In the absence of pasteurization, the safety of tiger nut-based beverages is not warranted. In spite of fermentation, some foodborne pathogens or mycotoxigenic fungi have been observed in fermented beverages. Further studies are required to select a tailored bacterial cocktail which would effectively dominate endogenous flora, preserve bioactive compounds and result in a well-accepted beverage.


2013 ◽  
Vol 48 (7) ◽  
pp. 1474-1482 ◽  
Author(s):  
Qingli Zhang ◽  
Mindy M. Brashears ◽  
Zhimin Yu ◽  
Jiaoyan Ren ◽  
Yinjuan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document