scholarly journals Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models

LWT ◽  
2021 ◽  
pp. 112638
Author(s):  
Samira Raesi ◽  
Reza Mohammadi ◽  
Zahra Khammar ◽  
Giti Paimard ◽  
Sepehr Abdalbeygi ◽  
...  
2016 ◽  
Vol 12 (6) ◽  
pp. 4127-4133
Author(s):  
Nazmul Kayes ◽  
Jalil Miah ◽  
Md. Obaidullah ◽  
Akter Hossain ◽  
Mufazzal Hossain

Photodegradation of textile dyes in the presence of an aqueous suspension of semiconductor oxides has been of growing interest. Although this method of destruction of dyes is efficient, the main obstacle of applying this technique in the industry is the time and cost involving separation of oxides from an aqueous suspension. In this research, an attempted was made to develop ZnO films on a glass substrate by simple immobilization method for the adsorption and photodegradation of a typical dye, Remazol Red R (RRR) from aqueous solution. Adsorption and photodegradation of  RRR were performed in the presence of glass supported ZnO film. Photodegradation of the dye was carried out by varying different parameters such as the catalyst dosage, initial concentrations of RRR, and light sources. The percentage of adsorption as well as photodegradation increased with the amount of ZnO, reaches a maximum and then decreased. Maximum degradation has been found under solar light irradiation as compared to UV-light irradiation. Removal efficiency was also found to be influenced by the pre-sonication of ZnO suspension.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2012 ◽  
Vol 45 (8) ◽  
pp. 581-587
Author(s):  
Cheng-Zhu Zhu ◽  
Qiao-Hong Liu ◽  
Jun Lu ◽  
Shu-Chuan Peng ◽  
Hui-Qi Hou

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


2017 ◽  
Vol 75 (9) ◽  
pp. 2034-2046 ◽  
Author(s):  
Adnan Khan ◽  
Samina Begum ◽  
Nauman Ali ◽  
Sabir Khan ◽  
Sajjad Hussain ◽  
...  

A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves. The membrane containing nickel magnetic particles (CHNiF-G) shows high thermal stability compared to the other membranes. The Fourier transform infrared spectroscopy showed successful preparation of chitosan magnetic membrane. Scanning electron microscopy micrographs showed the rough surface of the membrane with increased porosity. The prepared chitosan membranes were applied to cations of copper, nickel and lead in dilute aqueous solution. The chitosan membrane showed the following adsorption order for metallic cations: Cu2+ &gt; Ni2+ &gt; Pb2+, while CHNiF-G showed higher capacity, 3.51 mmol g−1 for copper, reflecting the improvement in adsorption capacity, since the amount of copper on pristine chitosan gave 1.40 mmol g−1. The time required for adsorption to reach to the equilibrium was 6 h for the selected cations using different chitosan membranes. The kinetic study showed that adsorption followed pseudo-second order kinetics. The most commonly used isotherm models, Freundlich, Langmuir and Temkin, were applied to experimental data using linear regression technique. However, The Temkin model fits better to experimental data.


2017 ◽  
Vol 76 (7) ◽  
pp. 1726-1738 ◽  
Author(s):  
Raluca Maria Hlihor ◽  
Mihaela Roşca ◽  
Teresa Tavares ◽  
Maria Gavrilescu

The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.


2019 ◽  
Vol 2 (04) ◽  
pp. 15-26
Author(s):  
Beniah Obinna Isiuku ◽  
Francis Chizoruo Ibe

The biosorption of metanil yellow on hen egg membrane from aqueous solution in a batch process was investigated at 29oC with a view to determine the potential of the membrane in removing metanil yellow from aqueous solution.  The effects of contact time, initial biosorbate concentration, biosorbent dosage and initial biosorbate pH were determined. Various isotherm models were used to analyze experimental data. The highest experimental equilibrium biosorption capacity obtained was 129.88 mg/g. The optimum pH was 3. Adsorption capacity increased with increase in initial solution concentration but decreased with increase in time. The isotherm models applied were good fits based on correlation coefficients. Flory-Huggins isotherm was the best fit (R2 0.986). The biosorption was endothermic, good, physisorptive and spontaneous. This work shows that hen egg membrane is a potential biosorbent for the removal of metanil yellow from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document