Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution

2017 ◽  
Vol 75 (9) ◽  
pp. 2034-2046 ◽  
Author(s):  
Adnan Khan ◽  
Samina Begum ◽  
Nauman Ali ◽  
Sabir Khan ◽  
Sajjad Hussain ◽  
...  

A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves. The membrane containing nickel magnetic particles (CHNiF-G) shows high thermal stability compared to the other membranes. The Fourier transform infrared spectroscopy showed successful preparation of chitosan magnetic membrane. Scanning electron microscopy micrographs showed the rough surface of the membrane with increased porosity. The prepared chitosan membranes were applied to cations of copper, nickel and lead in dilute aqueous solution. The chitosan membrane showed the following adsorption order for metallic cations: Cu2+ > Ni2+ > Pb2+, while CHNiF-G showed higher capacity, 3.51 mmol g−1 for copper, reflecting the improvement in adsorption capacity, since the amount of copper on pristine chitosan gave 1.40 mmol g−1. The time required for adsorption to reach to the equilibrium was 6 h for the selected cations using different chitosan membranes. The kinetic study showed that adsorption followed pseudo-second order kinetics. The most commonly used isotherm models, Freundlich, Langmuir and Temkin, were applied to experimental data using linear regression technique. However, The Temkin model fits better to experimental data.

2018 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Muhammad Ali Zulfikar ◽  
Afdal Bahri ◽  
Muhamad Nasir

<p>The main objective of this study is to investigate the isotherm sorption of humic acid (HA) from aqueous solution onto dual nanofiber PMMA/PVDF. Batch adsorption experiments were carried out using HA solution as an adsorbate under variety of concentration in the range of 50-200 mg/L. The experimental data were analyzed by the Langmuir, Freundlich and Sips models of adsorption. The experimental results indicate that, the adsorption capacity of HA adsorption increases with an increase in the HA concentrations. The adsorption of HA onto dual nanofiber PMMA/PVDF agrees well with the Langmuir isotherm models with the maximum adsorption capacity was found to be 137.40 mg g<sup>-1</sup> at concentration of 100 mg L<sup>-1</sup>.</p>


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dhiraj Dutta ◽  
Jyoti Prasad Borah ◽  
Amrit Puzari

Results of investigation on adsorption of Mn2+ from aqueous solution by manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM) are reported here. This is the first report on Mn-coated hollow polymer as a substitute for widely used materials like green sand or MN-coated sand. Hollow polymethylmethacrylate (HPM) was prepared by using a literature procedure. Manganese oxide (MnO) was coated on the surface of HPM (MHPM) by using the electroless plating technique. The HPM and MHPM were characterized by using optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Optical and scanning micrographs were used to monitor the surface properties of the coated layer which revealed the presence of MnO on the surface of HPM. TGA showed the presence of 4-5% of MnO in MHPM. Adsorption isotherm studies were carried out as a function of pH, initial ion concentration, and contact time, to determine the adsorption efficiency for removal of Mn2+ from contaminated water by the synthesized MHPM. The isotherm results showed that the maximum adsorption capacity of MnO-coated HPM to remove manganese contaminants from water is 8.373 mg/g. The obtained R 2 values of Langmuir isotherm and Freundlich isotherm models were 1 and 0.87, respectively. Therefore, R 2 magnitude confirmed that the Langmuir model is best suited for Mn2+ adsorption by a monolayer of MHPM adsorbent. The material developed shows higher adsorption capacity even at a higher concentration of solute ions, which is not usually observed with similar materials of this kind. Overall findings indicate that MHPM is a very potential lightweight adsorbent for removal of Mn2+ from the aqueous solution because of its low density and high surface area.


Author(s):  
Abideen Idowu Adeogun ◽  
Ramesh Babu Balakrishnan

<span lang="EN-US">Electrocoagulation (EC) was used for the removal of anthraquinone dye, Alizarin Red S (ARS) from aqueous solution, the process was carried out in a batch electrochemical cell with Al electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process were investigated. Equilibrium was attained after 10 minutes at 30 oC. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic of the electrocoagulation process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analyzed using six isotherm models: Langmuir, Freudlinch, Redlich–Peterson, Temkin, Dubinin–Radushkevich and Sips isotherms and it was found that the data fitted well with Dubinin–Radushkevich and Sips isotherm model. The study showed that the process depend on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (∆G<sup>o</sup>, ∆H<sup>o</sup> and ∆S<sup>o</sup>) indicated that the process is spontaneous and endothermic in nature.</span>


2016 ◽  
Vol 78 (1-2) ◽  
Author(s):  
Nik Ahmad Nizam Nik Malek ◽  
Nurain Mat Sihat ◽  
Mahmud A. S. Khalifa ◽  
Auni Afiqah Kamaru ◽  
Nor Suriani Sani

In the present study, the adsorption of acid orange 7 (AO7) dye from aqueous solution by sugarcane bagasse (SB) and cetylpyridinium bromide (CPBr) modified sugarcane bagasse (SBC) was examined. SBC was prepared by reacting SB with different concentrations (0.1, 1.0 and 4.0 mM) of cationic surfactant, CPBr. The SB and SBC were characterized using Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments were carried out in a batch mode. The effect of initial AO7 concentrations (5-1000 mg/L), initial CPBr concentrations and pH of AO7 solution (2-9) on the adsorption capacity of SB and SBC were investigated. The experimental adsorption data were analyzed using Langmuir and Freundlich isotherm models. The adsorption of AO7 onto SB and SBC followed Freundlich and Langmuir isotherm models, respectively. The maximum uptake of AO7 was obtained by SBC4.0 (SB treated with 4.0 mMCPBr) with the adsorption capacity of 144.928 mg/g. The highest AO7 removal was found to be at pH 2 and 7 for SB and SBC, respectively. As a conclusion, sugarcane bagasse modified with CPBr can become an alternative adsorbent for the removal of anionic compounds in aqueous solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Serpil Edebali

New nanocomposite sorbents were synthesized and used for Cr(VI) removal from aqueous solution by modifying Turkish perlite withα-MnO2(PAM) andγ-Fe2O3(PGI) nanoparticles. Nanocomposite sorbents were characterized using scanning electron microscopy (SEM) and FTIR. The effects of several parameters such as contact time, amount of sorbent, pH, and concentration were investigated and it was found that the sorption capacity for Cr(VI) was found to be highly pH dependent. Also the experimental data were evaluated in terms of different isotherm models. The data of PGI were well fit to DR isotherm model whereas PAM data were well described with Temkin isotherm model. The sorption capacities were found to be 8.64 and 7.6 mg g−1for PGI and PAM, respectively. This confirms that these nanocomposites retain the constituent nanoparticle properties while being macroscopic particles suitable for chromium removal in water treatment.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ying-Xia Ma ◽  
Yong-Xin Ruan ◽  
Dan Xing ◽  
Xue-Yan Du ◽  
Pei-Qing La

Ethylenediamine functionalized magnetic expanded graphite decorated with Fe3O4 nanoparticles (MEG-NH2) was fabricated by one-pot solvothermal method. The as-prepared MEG-NH2 nanohybrids were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Zeta potential analyzer. The effects of Fe3O4 content in MEG-NH2 nanohybrids, pH, initial concentration, contact time, and dosage on adsorption properties of the MEG-NH2 nanohybrids for Ag(I) from aqueous solution were investigated by batch experiments. The pseudo-first-order and the pseudo-second-order kinetic models were utilized to study adsorption kinetics. The experimental data was also analyzed with Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models. The results show that Ag(I) was reduced to silver in the process of the adsorption by MEG-NH2 nanohybrids; the experimental data was better fitted to pseudo-second-order model and Langmuir isotherm model which revealed that the adsorption process was a chemical adsorption by the formation of silver on the surface of MEG-NH2 nanohybrids.


2014 ◽  
Vol 881-883 ◽  
pp. 519-524 ◽  
Author(s):  
Lei Lei Cheng ◽  
Xiao Dong Wei ◽  
Xiao Lei Hao ◽  
Di Ruan ◽  
Shao Ming Yu

In this research, chrysotile nanotubes (ChNTs) were synthesized by the hydrothermal method. Synthetic ChNTs were characterized using XRD, SEM, TEM and N2adsorption-desorption. Adsorption technique was applied for removal of Sr (II) and Nd (III) from aqueous solution by using ChNTs. The process had been investigated as a function of pH and temperature. The experimental data were analyzed using equilibrium isotherm models. The adsorption isotherms are fitted well by Langmuir model, having a maximum adsorption capacities of 102.56 mg·g-1for Sr (II) and 47.44 mg·g-1for Nd (III) at 298 ± 1 K. FTIR and XPS techniques were employed to investigate possible adsorption mechanism.


Sign in / Sign up

Export Citation Format

Share Document