Microstructure refinement and enhanced wear-resistance modulated by stress relaxation processing in a metastable β titanium alloy

2021 ◽  
Vol 181 ◽  
pp. 111505
Author(s):  
Ke Hua ◽  
Yongliang Zhang ◽  
Fan Zhang ◽  
Hongchao Kou ◽  
Xiaolin Li ◽  
...  
2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2011 ◽  
Vol 46 (6) ◽  
pp. 834-840
Author(s):  
I. M. Pohrelyuk ◽  
O. V. Tkachuk ◽  
O. V. Sambors’kyi

Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han

TC4, which is one of the most widely used titanium alloy, is frequently used in biomedical field due to its biocompatible. In this work, selective laser melting (SLM) was used to manufacture TC4 parts and the printed parts were heat-treated using laser rescanning technology. The experimental results showed that laser rescanning had a high impact on the quality of SLMed part, and a different performance on wear resistance can be found on the basis. It can be seen that the volume porosity of the sample was 7.6 ± 0.5% without using any further processing technology. The volume porosity of the sample processed using laser rescanning strategy was decreased and the square-framed rescanning strategy had a relative optimal volume porosity (1.5 ± 0.3%) in all these five samples. With the further decreasing of volume porosity, the wear resistance decreased at the same time. As its excellent bio-tribological properties, the square-framed rescanning may be a potential suitable strategy to forming TC4 which used in human body.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350038 ◽  
Author(s):  
JIANQUAN LI ◽  
HUASHI LIU ◽  
JIANING LI ◽  
GUOZHONG LI

Zn was firstly used to improve wear resistance of a TA7 (Ti–5Al–2.5Sn) titanium alloy surface by mean of a laser alloying (LA) technique. The synthesis of the hard coating on a TA7 titanium alloy by LA of Co–Ti–Cr–TiB2–Zn–CeO2 pre-placed powders was investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experimental results indicated lot of the nanocrystals, such as Ti–B/CoZn13 and the amorphous phases were produced in such LA coating. The nucleation and growth of the amorphous phases were retarded by the nanocrystals in a certain extent during the crystallization process of the amorphous phases. Compared with a TA7 alloy substrate, an improvement of the wear resistance was obtained for such LA composite coating.


Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.


2010 ◽  
Vol 37 (3) ◽  
pp. 858-862 ◽  
Author(s):  
高雪松 Gao Xuesong ◽  
黄因慧 Huang Yinhui ◽  
田宗军 Tian Zongjun ◽  
刘志东 Liu Zhidong ◽  
沈理达 Shen Lida ◽  
...  

Technologies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 38 ◽  
Author(s):  
Marina A. Volosova ◽  
Sergey V. Fyodorov ◽  
Stepan Opleshin ◽  
Mikhail Mosyanov

The work was devoted to the study of the effectiveness of the application of multi-component coatings, TiN–Al/TiN, TiN–AlTiN/SiN, and CrTiN–AlTiN–AlTiCrN/SiN, obtained by cathodic arc deposition to increase the wear resistance of 6WH10F carbide end mills in trochoidal milling of titanium alloy. The surface morphology of the tool with coatings was studied using scanning electron microscopy, and surface roughness texture was estimated. Microhardness and elastic modulus of the coated carbide tool surface layer were determined by nanoindentation. The process of sticking titanium to the working surface of the tool and quantitative evaluation of end mill wear with multi-component coatings at the trochoidal strategy of milling titanium alloy was studied. The CrTiN–AlTiN–AlTiCrN/SiN coating showed the maximum value of the plasticity index at the level of 0.12. The maximum effect of reducing the wear rate was achieved when using a tool with a CrTiN –AlTiN–AlTiCrN/SiN coating when the operating time to failure of end mills was increased by 4.6 times compared to samples without coating, by 1.4 times compared with TiN–Al/TiN coating and 1.15 times compared with TiN–AlTiN/SiN coating.


Sign in / Sign up

Export Citation Format

Share Document